Deep Learning lecture 9 Sequence Modeling (2) Yi Wu, IIIS Spring 2025 Apr-14

Today's Topic

- Sequence to Sequence Model and Attention Mechanism
- The Transformer Model
- Generation Speedup for Transformer Model

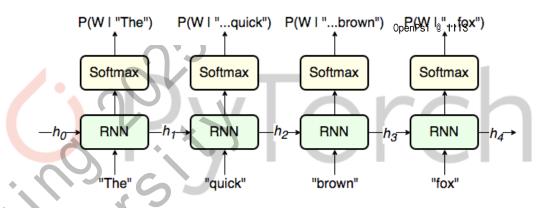
- Recurrent Neural Network
 - Same MLP network over a sequence (i.e., "loops")
 - Arbitrarily long sequences \rightarrow fixed-sized vector
 - Training: backpropagation through time (BPTT)
 - Practical Issues
 - Weights/Gradient explosion and saturation
 - A few tricks for gradient explosion
 - Gradient clipping, truncated BPTT, careful initialization
- Long Short-Term Memory (LSTM) Network
 - A specialized RNN for long-term dependency (~100 timesteps)

Α

- Key ideas: elementary gates
- Variants: bidirectional LSTM; Peephole LSTM; GRU; etc

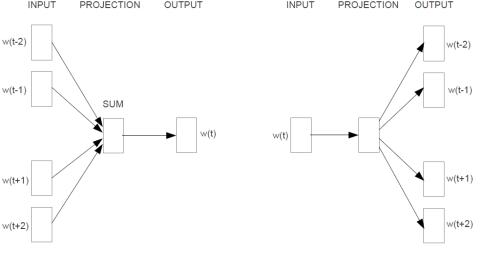
OpenPsi @ 111S

Α

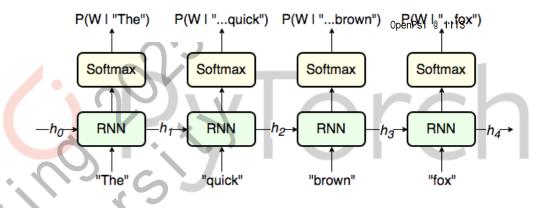


- Autoregressive Language Model
 - Generative model over texts: $P(X) = \prod_t P(X_t | X_{i < t})$
 - LSTM language model: Y_t , $h_t = LSTM(h_{t-1}, X_t)$; $P(X_t|X_{i < t}) = Softmax(Y_t)$
 - Word Embedding
 - A distributed representation for word semantics
- Word2Vec: a tool for word embedding
 - Objective: from context *c* to predict word *w*
 - CBOW and Skip-Gram
 - Negative Sampling
 - Multi-class prediction \rightarrow binary classification
 - D training corpus; V vocabulary

$$L(W,C) = \sum_{(c,w)\in D} \log \frac{1}{\exp(-w_{\text{copyright B}}^T c) + 1} + \sum_{\text{Specify introductive}} \log \frac{\exp(-\widetilde{w}^T c)}{\exp(-\widetilde{w}^T c) + 1}$$



CBOW



- Autoregressive Language Model
 - Generative model over texts: $P(X) = \prod_t P(X_t | X_{i < t})$
 - LSTM language model: Y_t , $h_t = LSTM(h_{t-1}, X_t)$; $P(X_t|X_{i < t}) = Softmax(Y_t)$
 - Word Embedding

Negative Sampling

- A distributed representation for word semantics
- Word2Vec: a tool for word embedding
 - Objective: from context *c* to predict word *w*
 - CBOW and Skip-Gram Word2Vec is only for representation learning!
 - It does not care about prediction accuracy!

w(t-2)

w(t-1)

PROJECTION

SUM

OUTPU

- Multi-class prediction \rightarrow binary classification
- *D* training corpus; *V* vocabulary $L(W,C) = \sum_{(c,w)\in D} \log \frac{1}{\exp(-w_{\text{copyright @ IIIS, Tsight @ IIIS, Tsight@ IIIS, T$

Skip-gram

PROJECTION

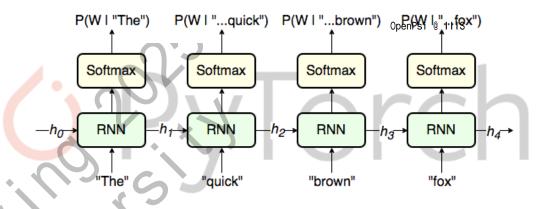
OUTPUT

w(t-2)

w(t-1

w(t+1)

w(t+2)



- Autoregressive Language Model
 - Generative model over texts: $P(X) = \prod_t P(X_t | X_{i < t})$
 - LSTM language model: Y_t , $h_t = LSTM(h_{t-1}, X_t)$; $P(X_t|X_{i < t}) = Softmax(Y_t)$
 - Word Embedding
 - A distributed representation for word semantics
- Word2Vec: a tool for word embedding
- More Techniques
 - Hierarchical softmax
 - Beam search
 - ELMo for contextualized embeddings

Language Model Applications

- Text Classification
 - Supervised learning
- Text Generation
 - $p(X; \theta)$: the probability for X
 - Unconditioned Generation
 - E.g., AI作诗
 - Conditioned generation?
 - E.g., Machine translation

在数据的海洋里遨游, 算法如风,吹散迷雾。 神经元闪烁似星辰, 连接着未来的道路。 梯度回溯千重浪, 优化求解万象生。 一行代码塑乾坤, 模型自我去提升。

深度之梦

7

Machine Translation

- A task of translating a sentence from a source language to the target language
 - *x:* L'homme est né libre, et partout il est dans les fers

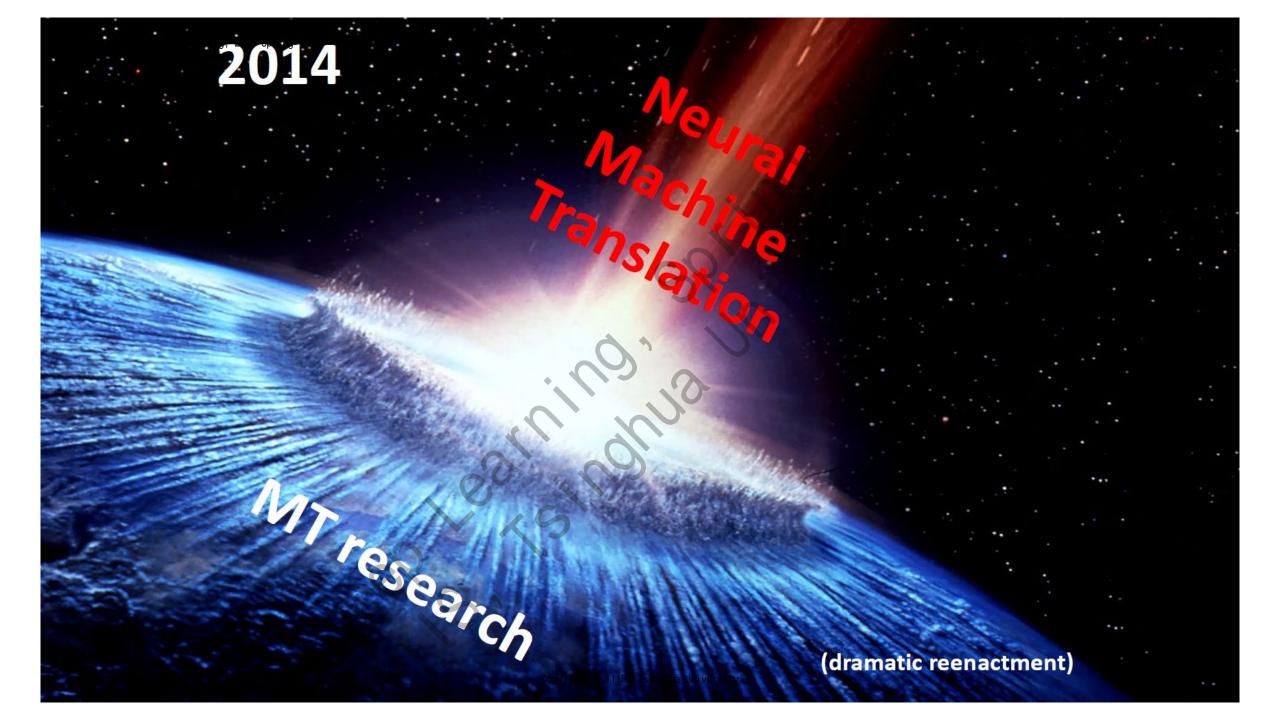
y: Man is born free, but everywhere he is in chains

8

Machine Translation

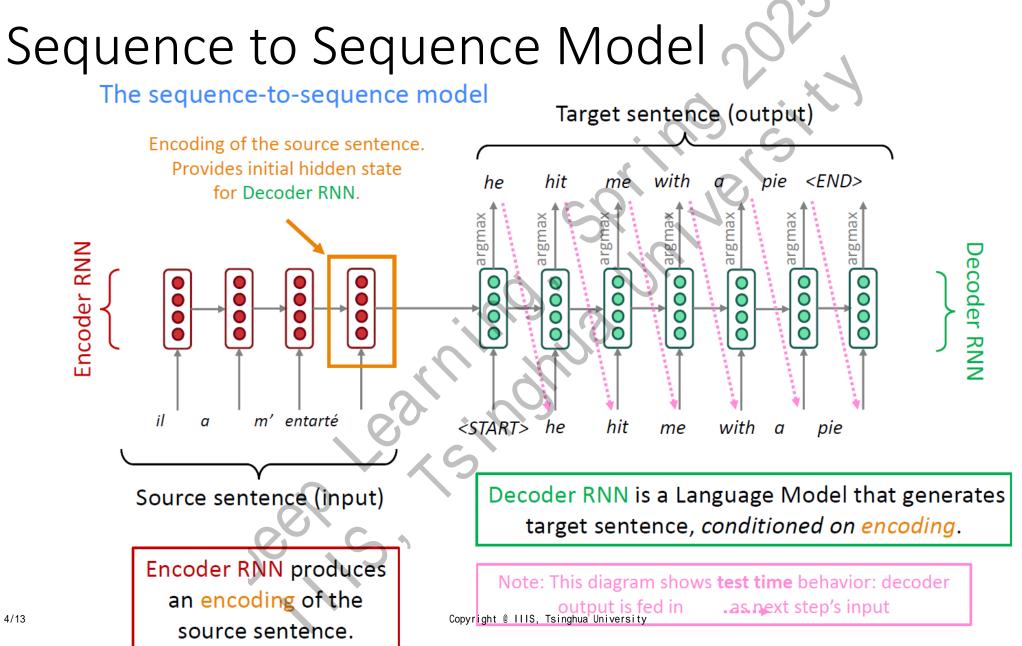
- Before 2014: Statistical Machine Translation
 - Extremely complex systems that require massive human efforts
 - Separately designed components
 - A lot of feature engineering
 - Lots of linguistics domain knowledge and expertise
- Before 2016:
 - Google's commercial translation product is based on statistical machine translation
- What happened in 2014?
 - A borrowed slide from Stanford CS224

(dramatic reenactment)



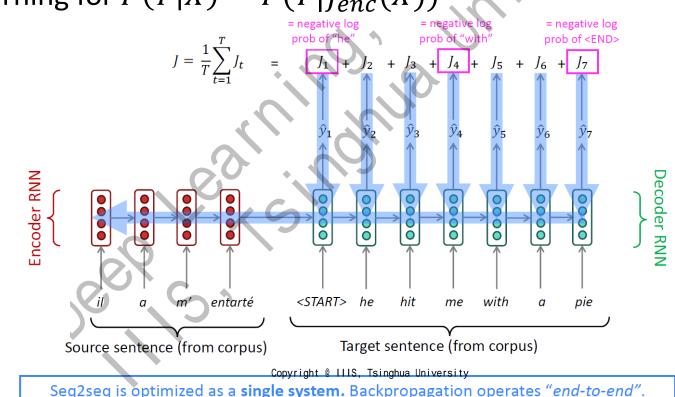
- Neural Machine Translation (NMT)
 - Learning to translate via single end-to-end neural network!
 - Source language X, then $Y = f(X; \theta)$
- Sequence-to-Sequence Model (Seq2Seq, Sutskever et al, NIPS2014)
 - NeurIPS 2024 test-of-time award
 - Two RNNs: f_{enc} and f_{dec} , $X \rightarrow f_{enc} \rightarrow h \rightarrow f_{dec} \rightarrow Y$
 - Encoder f_{enc}
 - It takes in X, and produce the initial hidden state h for decoder
 - We can use bidirectional RNN
 - Decoder f_{dec}
 - It takes in the hidden state h from f_{enc} to generate Y
 - Autoregressive language model

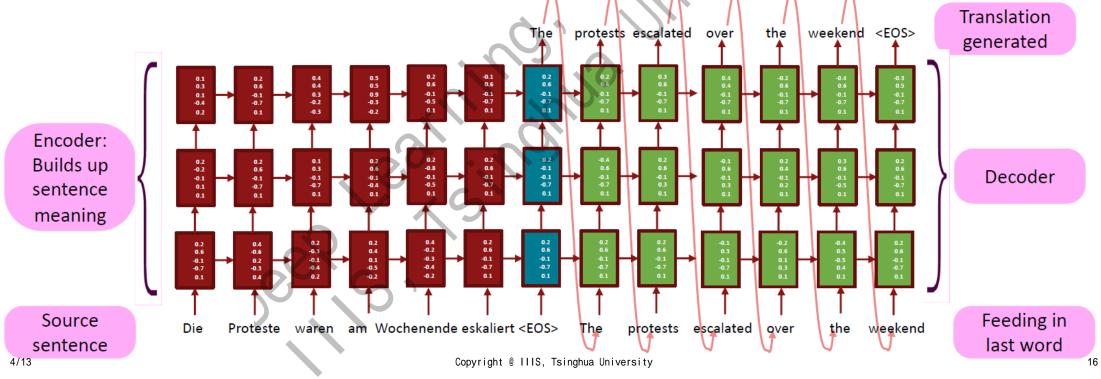
13



- Seq2Seq is a conditioned language model
 - $h = f_{enc}(X)$ (final hidden state)
 - $Y = f_{dec}(h)$ (a LM that conditions on the initial hidden state h)
- Seq2Seq model is particularly generic for a lot of applications
 - Summarization (摘要) or Captioning (起标题)
 - Article → abstract/caption
 - Dialogue (对话)
 - Previous utterance \rightarrow next utterance
 - Code generation
 - Natural language \rightarrow python
 - VAE-based seq2seq model for text generation with latent variables

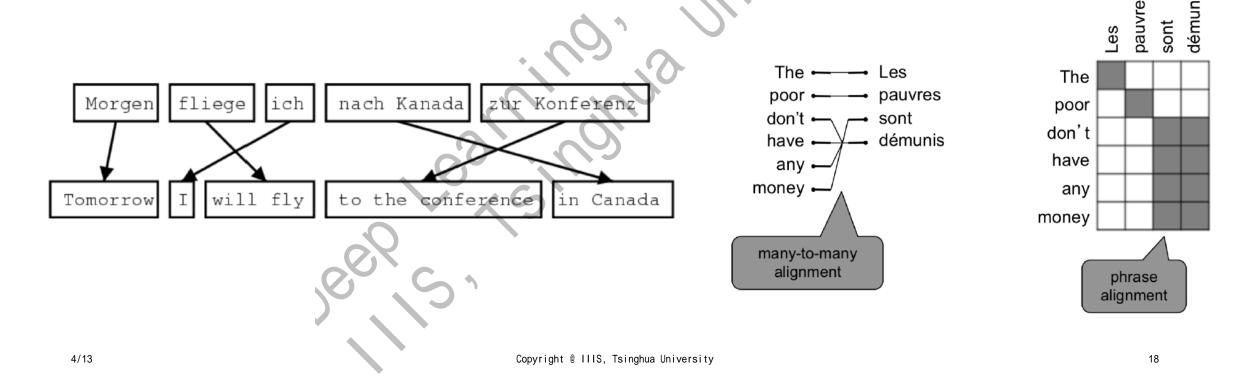
- How to train a seq2seq model?
 - Collect a huge paired dataset and train it end-to-end via BPTT!
 - MLE learning for $P(Y|X) = P(Y|f_{enc}(X))$





- 2016: Google switch google translate from SMT to NMT
 - Seq2Seq paper has >28.6k citations since 2014

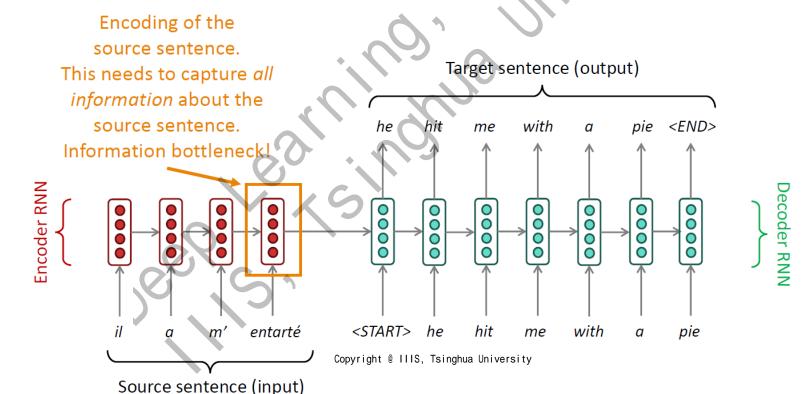
- Issue in the vanilla Seq2Seq model
 - Alignment: the word-level correspondence between X and Y
 - There are complex long-term dependencies



4/13

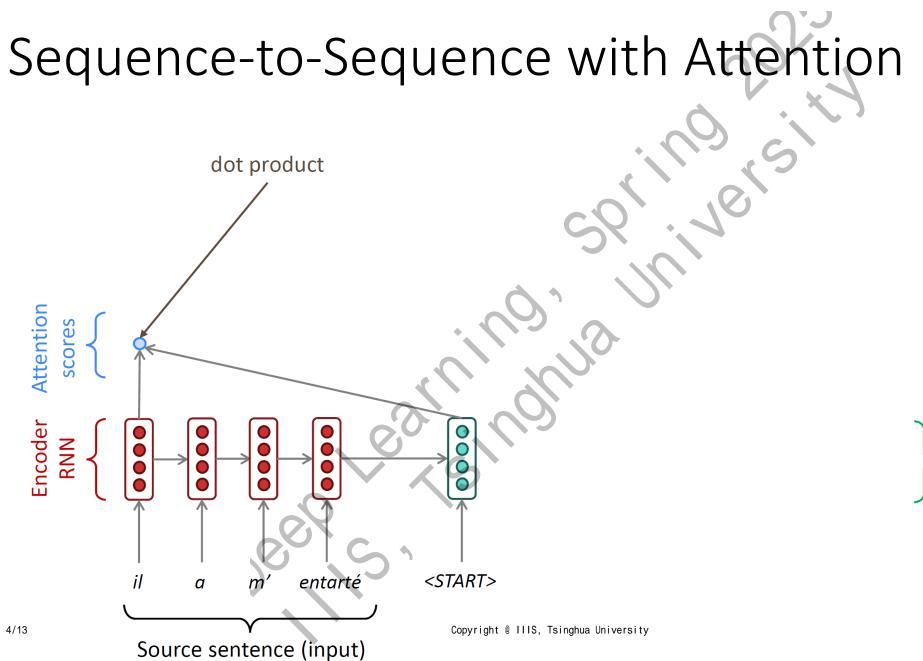
Sequence to Sequence Model

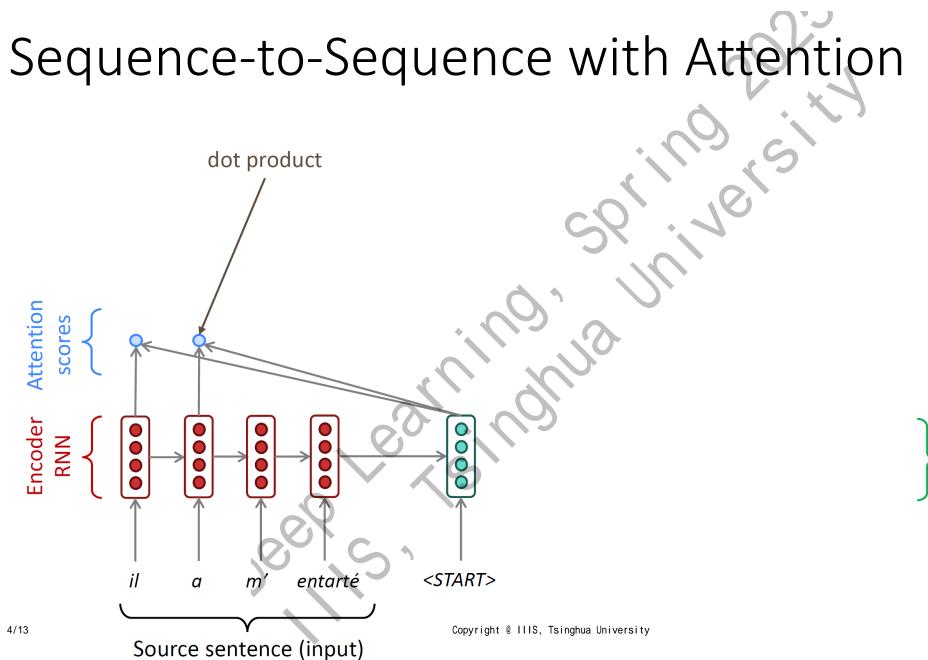
- Issue in the vanilla Seq2Seq model
 - The information bottleneck due to \boldsymbol{h}
 - We want each Y_t to also focus on X_i that it is aligned with

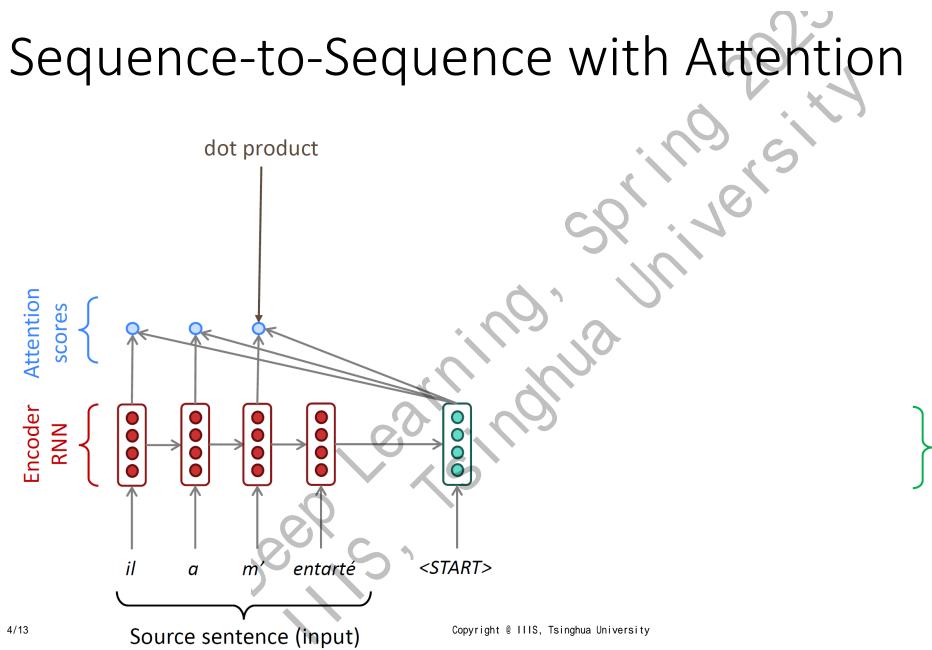


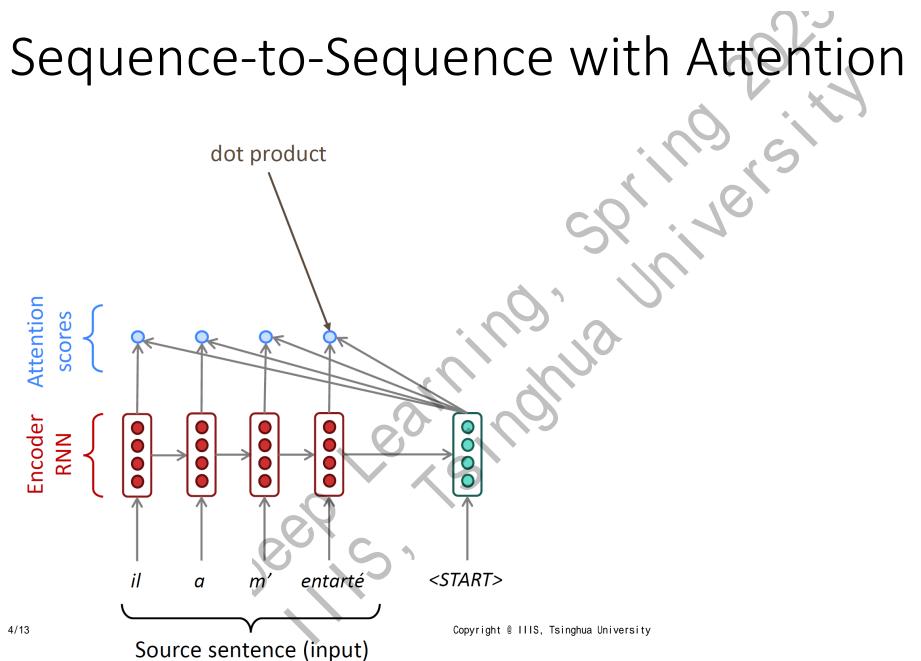
19

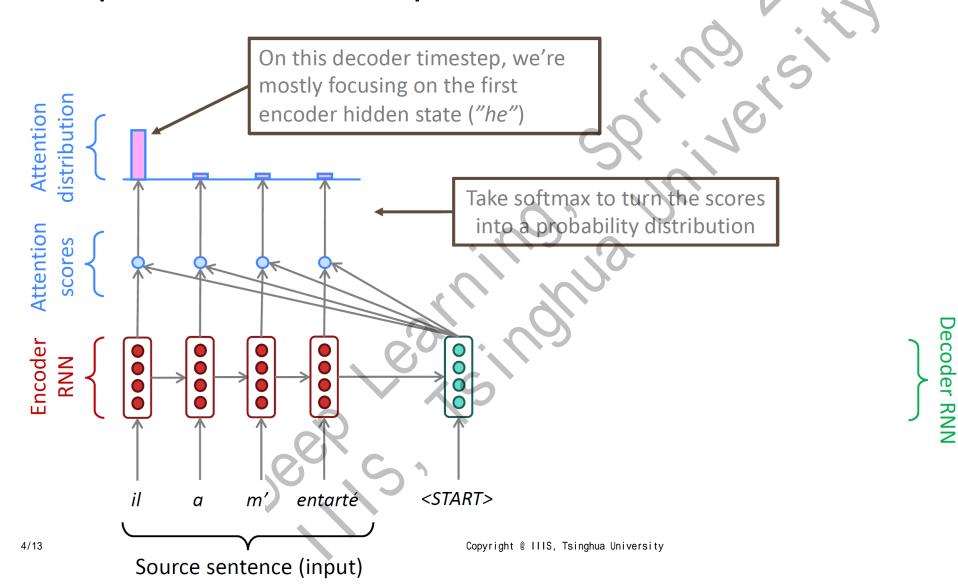
- NMT by Jointly Learning to Align and Translate
 - Bahdanau, Cho & Bengio, ICLR 2015 (38.5k citation)
 - Core idea:
 - When decoding Y_t , we consider both hidden states and alignments
 - Hidden: h_{t-1} from $Y_{i < t}$, i.e., $h_{t-1} = f_{dec}(Y_{i < t})$
 - Alignment: a direction connection to "key" words from X
 - Which part of *X* to focus?
 - Learn a softmax weight over X (attention distribution P_{att})
 - $P_{att}(X_i|h_{t-1})$: how much attention you want to put on word X_i
 - attention output $h_{att} = \sum_{i} f_{enc} (X_i | X_{j < i}) \cdot P_{att} (X_i | h_{t-1})$
 - Use h_{t-1} and h_{att} to compute Y_t
 - Let's go through the diagram before showing more details

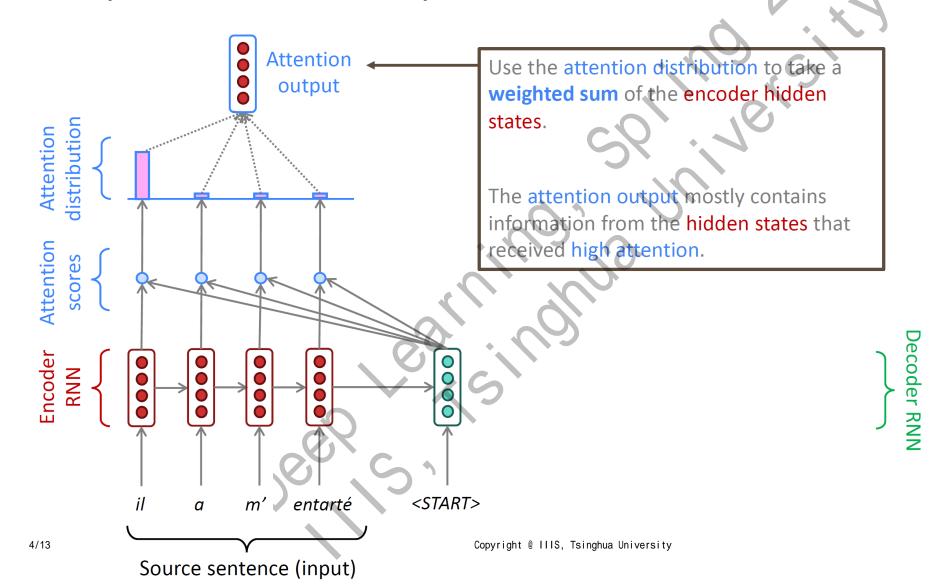




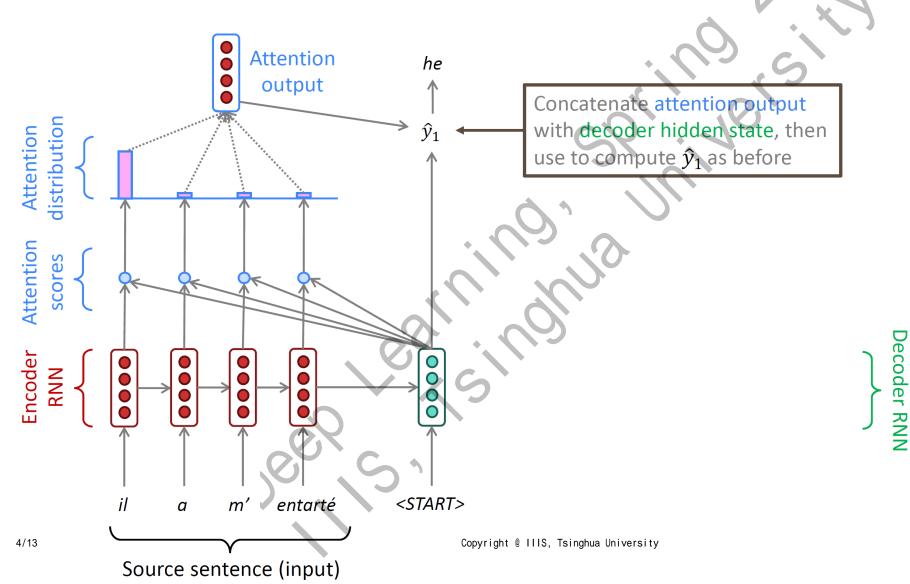


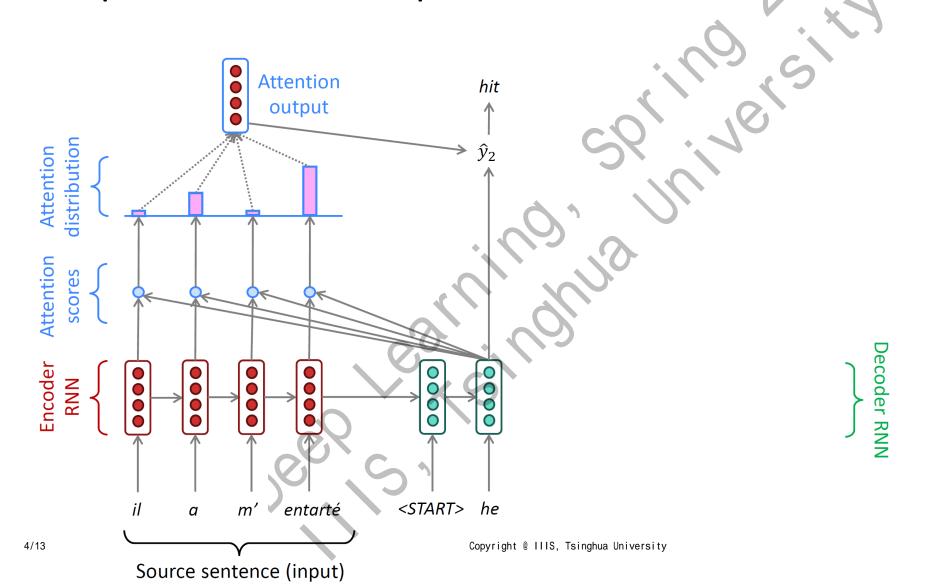




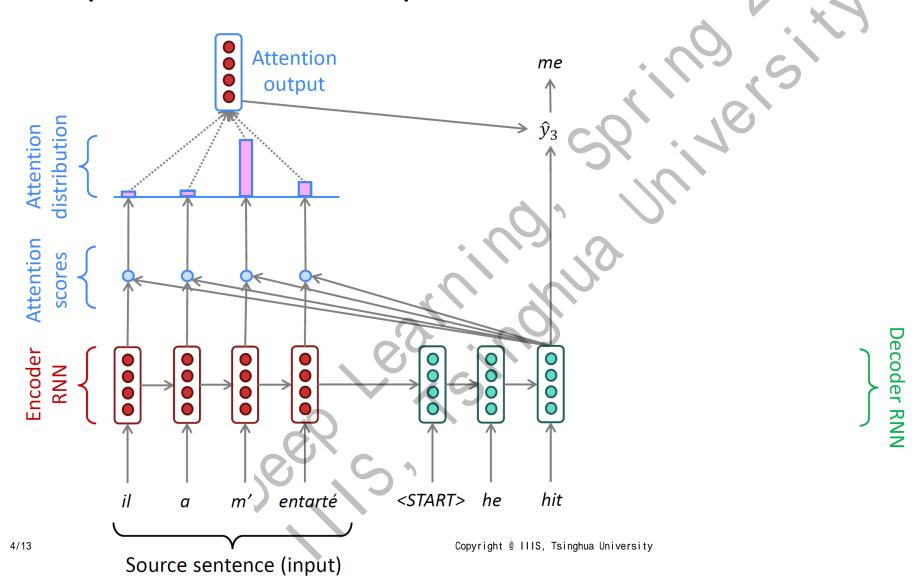


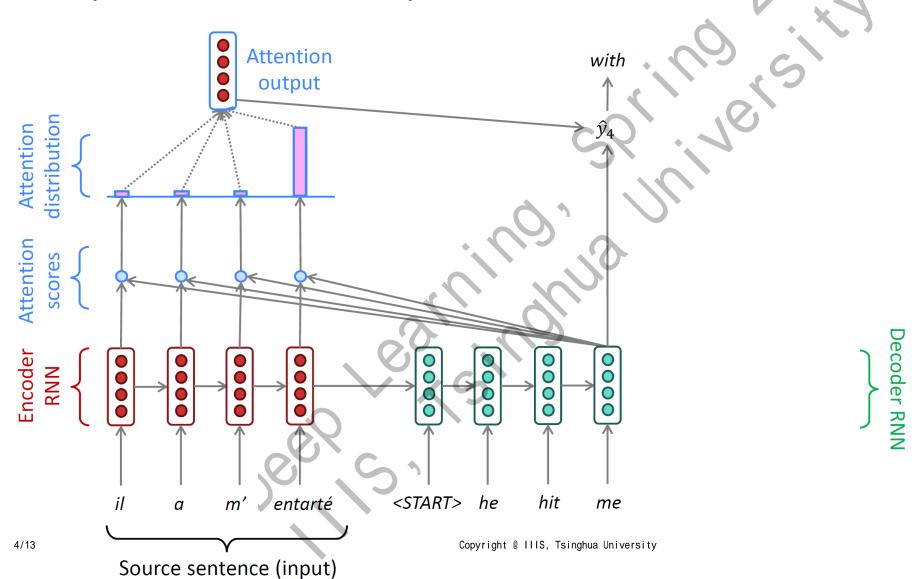
26





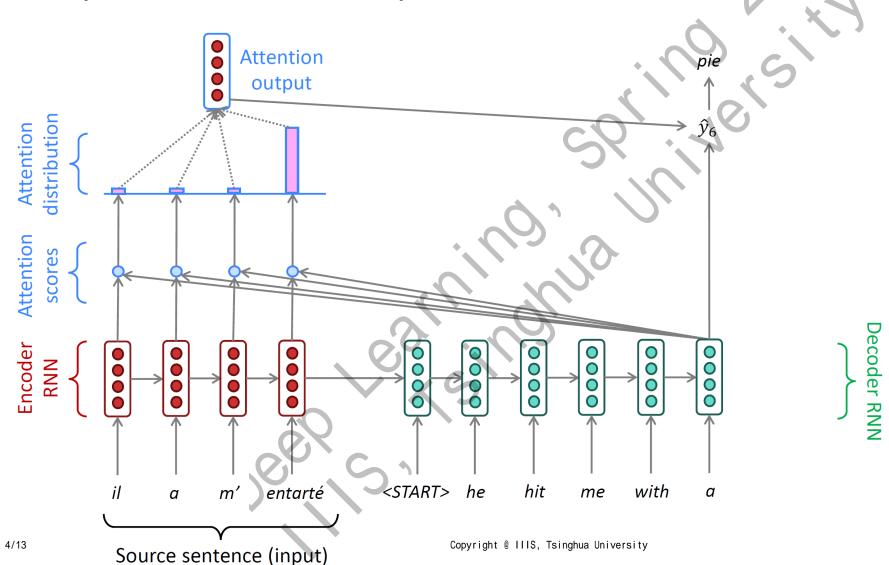
28





Source sentence (input)

Sequence-to-Sequence with Attention **Attention** 0 output 0 distribution Attention Attention scores Decoder RNN Encoder 0 0 0 0 0 Ο RNN 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 Ó <START> he m' hit with entarté il me а 4/13 Copyright @ IIIS, Tsinghua University



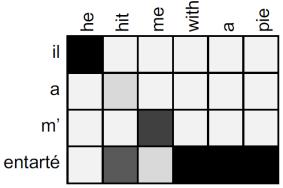
- Attention in equations
 - Input sequence X and encoder f_{enc} and decoder f_{dec}
 - $f_{enc}(X)$ produces hidden states h_1^{enc} , h_2^{enc} , ..., h_N^{enc}
 - On timestep t, we have decoder hidden state h_t
 - Attention score $e_i = h_t^T h_i^{enc}$
 - Attention distribution $\alpha_i = P_{att}(X_i) = \operatorname{softmax}(e_i)$
 - Attention output

$$h_{att}^{enc} = \sum_{i} \alpha_{i} h_{i}^{enc}$$

- $Y_t \sim g(h_t, h_{att}^{enc}; \theta)$
 - Sample output using both h_t and h_{att}^{enc}

Attention

- Attention is great!
 - It significantly improves NMT!
 - It solves the bottleneck problem and long-term dependency issue
 - Also helps gradient vanishing problem
 - It provides some interpretability
 - We can understand the focus of RNN decoder
- Attention is a general technique
 - Given a set of vector values V_i and a vector query q
 - Attention computes a weighted sum of values depending on q
- Attention can learn a representation of an arbitrary set of vectors $\{v_i\}$ depending on query q



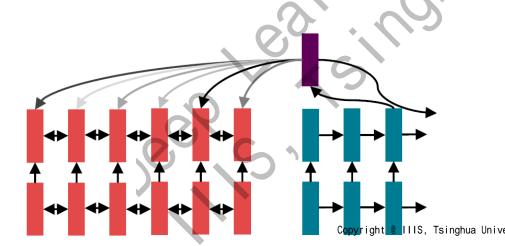
Attention

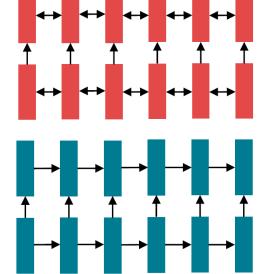
- Attention can learn a representation of an arbitrary set of vectors $\{v_i\}$ depending on query q
 - $\alpha_i = \operatorname{softmax}(f(v_i, q))$ (attention distribution)
 - $v_{att} = \sum_i \alpha_i v_i$ (attention output)
 - Attention is size-invariant and order-invariant
- More use cases
 - E.g., a representation of a set of points (Pointer network, NIPS2015 & Deep Sets, NIPS2017)
 - E.g., include non-local information in CNN (Non-local network, CVPR18; Self-Attention GAN, ICML 19; BigGAN, ICLR 19)

Attention

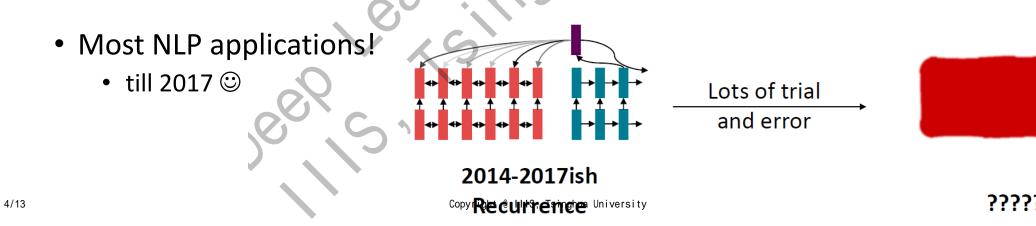
- Attention can learn a representation of an arbitrary set of vectors $\{v_i\}$ depending on query q
 - $\alpha_i = \operatorname{softmax}(f(v_i, q))$ (attention distribution)
 - $v_{att} = \sum_i \alpha_i v_i$ (attention output)
- Attention Variants $f(v_i, q)$
 - Multiplicative attention: $f(v_i, q) = q^T W h_i$
 - W is a weight matrix
 - Additive attention: $f(v_i, q) = u^T \tanh(W_1 v_i + W_2 q)$
 - W_1, W_2 are weight matrices
 - *u* is a weight vector
 - Expressiveness v.s. efficiency

- Attention-Based Seq2Seq Model
 - Use bidirectional LSTMs as your encoder for input data
 - Use stacked LSTMs as your decoder for output data
 - Use attention for long-term dependencies



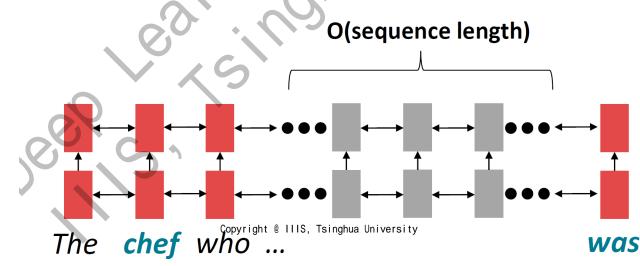


- Attention-Based Seq2Seq Model
 - Use bidirectional LSTMs as your encoder for input data
 - Use stacked LSTMs as your decoder for output data
 - Use attention for long-term dependencies



38

- Story So Far
 - RNN Models
 - Simple & Generic solution for sequence modeling
 - Issue for long-term dependencies
 - Linear computations for distant words through a single latent state
 - Lack of parallelization
 - Forced sequential computation (contrast with CNN)



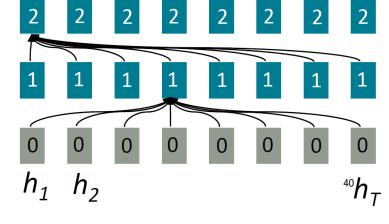
- Story So Far
 - RNN Models
 - Simple & Generic solution for sequence modeling
 - Issue for long-term dependencies
 - Linear computations for distant words through a single latent state
 - Lack of parallelization
 - Forced sequential computation (contrast with CNN)
 - Attention
 - Direct connection to distant words
 - *O*(*N*) computation but perfectly parallel!
 - Attention is all we need?

attention

attention

embedding

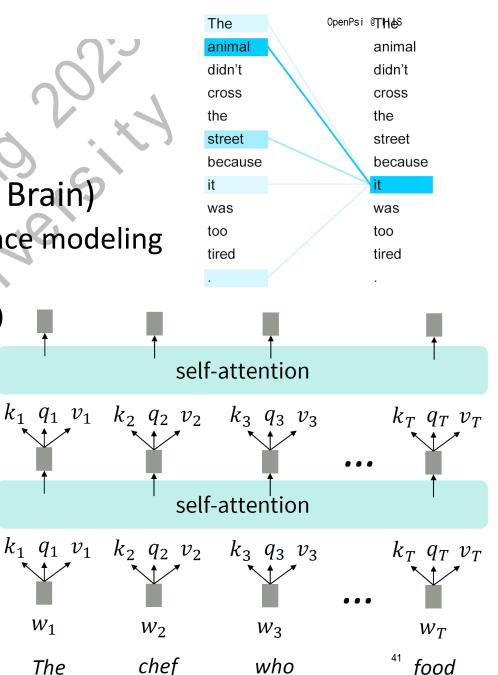
Copyright @ IIIS, Tsinghua University



4/13

- Attention is all you need (NIPS2017, Google Brain)
 - A purely attention-base architecture for sequence modeling
 - NO RNN at all
 - Basic component: Self-Attention, $Y = f_{SA}(X; \theta)$
 - Core idea:
 - X_t attends on the entire X sequence
 - Y_t computed from X_t and the attention output
 - Equations for Y_t
 - Key k_t , value v_t , query q_t from X_t
 - $k_t, v_t, q_t = g_1(X_t; \theta)$
 - Attention distribution $\alpha_{t,j} = \operatorname{softmax}(q_t^T k_j)$
 - Attention output $out_t = \sum_j \alpha_{t,j} v_j$
 - $Y_t = g_2(out_t; \theta)$
- 4/13 Issues of self-attention?

Copyright @ IIIS, Tsinghua University

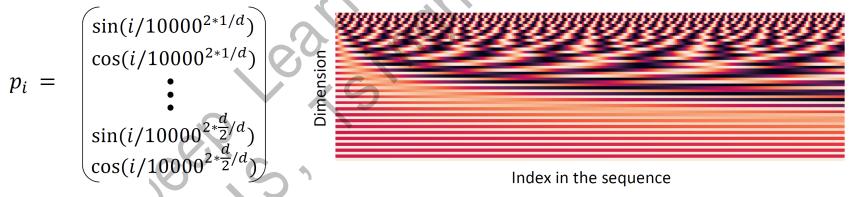


- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Attention is order-invariant
 - Lack of non-linearities
 - All the weights are simple linear weighted average
 - Capability of autoregressive modelling
 - In generation tasks, the model cannot "look at the future"
 - E.g., text generation
 - Y_t can only depend on $X_{i < t}$
 - Vanilla self-attention focuses on the entire sequence

- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Attention is order-invariant
 - Lack of non-linearities
 - All the weights are simple linear weighted average
 - Capability of autoregressive modelling
 - In generation tasks, the model cannot "look at the future"
 - E.g., text generation
 - Y_t can only depend on $X_{i < t}$
 - Vanilla self-attention focuses on the entire sequence

- Notion of Sequence Ordering
 - Vanilla attention
 - $\tilde{\alpha}_{i,j} = \operatorname{softmax}(\tilde{q}_i^T \tilde{k}_j); out_i = \sum_j \tilde{\alpha}_{i,j} \tilde{v}_j$
 - $\tilde{k}_t, \tilde{v}_t, \tilde{q}_t = g_1(X_t)$, do not contain position information
 - Idea: position encoding
 - p_i : an embedding vector of position i
 - $k_t, v_t, q_t = g_1([X_t, p_t])$ include position features
 - Practical remark:
 - Additive can be sufficient: $k_t \leftarrow \tilde{k}_t + p_t$, $q_t \leftarrow \tilde{q}_t + p_t$, $v_t \leftarrow \tilde{v}_t + p_t$
 - p_t is typically only included in the first layer
 - How to design p_i ?
 - Note that the length of a sequence can be long

- Notion of Sequence Ordering
 - Idea: position encoding p_i
 - $\tilde{k}_t, \tilde{v}_t, \tilde{q}_t = g_1(X_t)$, do not contain position information
 - Design of p_t
 - Sinusoidal position representation
 - Concatenate sinusoidal functions of varying periods



- Pros: simple, naturally modelling "relative position", easily applied to long sequences
- Cons: not learnable; generalization poorly to sequences longer than training data

Heatmap of $p_i^T p_i$

Position

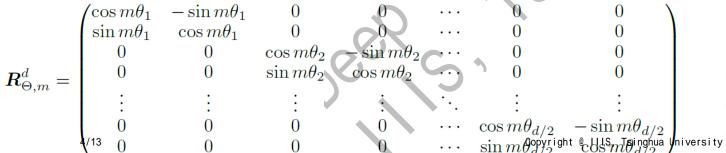
OpenPsi @ 111S

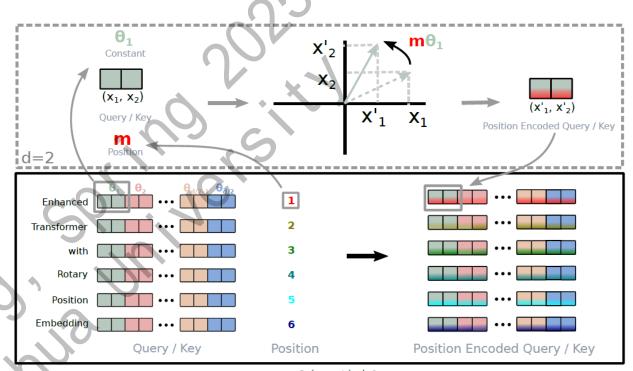
- Notion of Sequence Ordering
 - Idea: position encoding p_i
 - $\tilde{k}_t, \tilde{v}_t, \tilde{q}_t = g_1(X_t)$, do not contain position information
 - Design of p_t
 - Sinusoidal position representation
 - Learned absolute representation
 - Let p_t become a learned parameter vector!
 - Assume maximum length L, learn a matrix $p \in \mathbb{R}^{d \times T}$, p_t is a column of p
 - A popular choice in practice!
 - Pros:
 - Flexible and learnable, more powerful
 - Cons:
 - Assume a fixed maximum length L, does not work at all for length above L

- Notion of Sequence Ordering
 - Idea: position encoding p_i
 - $\tilde{k}_t, \tilde{v}_t, \tilde{q}_t = g_1(X_t)$, do not contain position information
 - Design of p_t
 - Sinusoidal position representation
 - Learned absolute representation
 - Relative position representation (ACL2018, Google)
 - When computing attention, relative distance is important!
 - $\alpha_{i,j} = \operatorname{softmax}\left(q_i^T(k_j + p_{[i-j]})\right)$
 - $out_i = \sum_j \alpha_{i,j} (v_j + p_{[i-j]})$
 - Bounded relative distance $p_t = p_{\max(-k,\min(k,t))}$
 - Truncate t < -k to k and t > k to k
 - Pros: learned representation and extrapolate well; More powerful.
 - Cons: computation overhead (refer to the paper for implementation tricks)

OpenPsi @ IIIS

- Notion of Sequence Ordering
 - Idea: position encoding p_i
 - $\tilde{k}_t, \tilde{v}_t, \tilde{q}_t = g_1(X_t)$, do not contain _i
 - Design of p_t
 - Sinusoidal position representation
 - Learned absolute representation
 - Relative position representation
 - Rotary position embedding (RoPE, Roformer, 2021)
 - Relative position but factored computation





$$\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, ..., d/2]\}$$

$$\boldsymbol{q}_{m}^{\mathsf{T}}\boldsymbol{k}_{n} = (\boldsymbol{R}_{\Theta,m}^{d}\boldsymbol{W}_{q}\boldsymbol{x}_{m})^{\mathsf{T}}(\boldsymbol{R}_{\Theta,n}^{d}\boldsymbol{W}_{k}\boldsymbol{x}_{n}) = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{W}_{q}\boldsymbol{R}_{\Theta,n-m}^{d}\boldsymbol{W}_{k}\boldsymbol{x}_{n}$$
$$\boldsymbol{R}_{\Theta,n-m}^{d} = (\boldsymbol{R}_{\Theta,m}^{d})^{\mathsf{T}}\boldsymbol{R}_{\Theta,n}^{d}$$

Remark:

- Compatible with any dimension and length
- Fast computation
- Effective in practice

- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Solution: position encoding
 - Lack of non-linearities
 - All the weights are simple linear weighted average
 - Capability of autoregressive modelling
 - In generation tasks, the model cannot "look at the future"
 - E.g., text generation
 - Y_t can only depend on $X_{i < t}$
 - Vanilla self-attention focuses on the entire sequence

- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Solution: position encoding
 - Lack of non-linearities
 - All the weights are simple linear weighted average
 - Capability of autoregressive modelling
 - In generation tasks, the model cannot "look at the future"
 - E.g., text generation
 - Y_t can only depend on $X_{i < t}$
 - Vanilla self-attention focuses on the entire sequence

- Combine nonlinearities in self-attention
 - Vanilla self-attention
 - No element-wise activation functions (e.g., ReLU, tanh)
 - Only weighted average and softmax operators
 - Essentially linear transformations of inputs
 - Easy fix:
 - Add an MLP to process *out*_i
 - $m_i = MLP(out_i)$
 - $= W_2 \cdot \operatorname{ReLU}(W_1 \cdot out_i + b_1) + b_2$
 - Remark
 - we do not put activation layer before softmax

FF

FF

FF

FF

self-attention

self-attention

FF

W3

who

. . .

. . .

 W_T

food

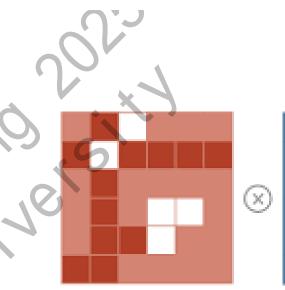
- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Solution: position encoding
 - Lack of non-linearities
 - Solution: post-processing MLP layer
 - Capability of autoregressive modelling
 - In generation tasks, the model cannot "look at the future"
 - E.g., text generation
 - Y_t can only depend on $X_{i < t}$
 - Vanilla self-attention focuses on the entire sequence

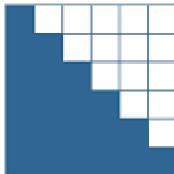
- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Solution: position encoding
 - Lack of non-linearities
 - Solution: post-processing MLP layer
 - Capability of autoregressive modelling
 - In generation tasks, the model cannot "look at the future"
 - E.g., text generation
 - Y_t can only depend on $X_{i < t}$
 - Vanilla self-attention focuses on the entire sequence

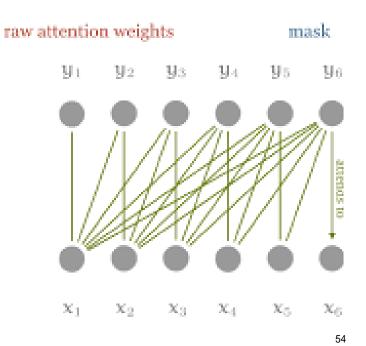
- Autoregressive Modeling
 - In language mode decoder: model $P(Y_t | X_{i < t})$
 - out_t cannot loot at future $X_{i>t}$
 - Naïve solution:
 - For each t, a varying for-loop only iterating over $i \leq t$
 - Varying for-loop for each *t*, parallelization unfriendly
 - Masked Attention
 - Compute $e_{i,j} = q_i^T k_j$ as usual (perfect parallel)
 - Mask out $e_{i>j}$ by setting $e_{i>j} = -\infty$ (perfect parallel)
 - $e \odot (1 M) \leftarrow -\infty$; *M* is a fixed 0/1 mask matrix
 - Then compute $\alpha_i = \operatorname{softmax}(e_i)$ (perfect parallel)
 - Remark:

4/13

- M = 1 for full self-attention
- Set *M* for arbitrary dependency ordering

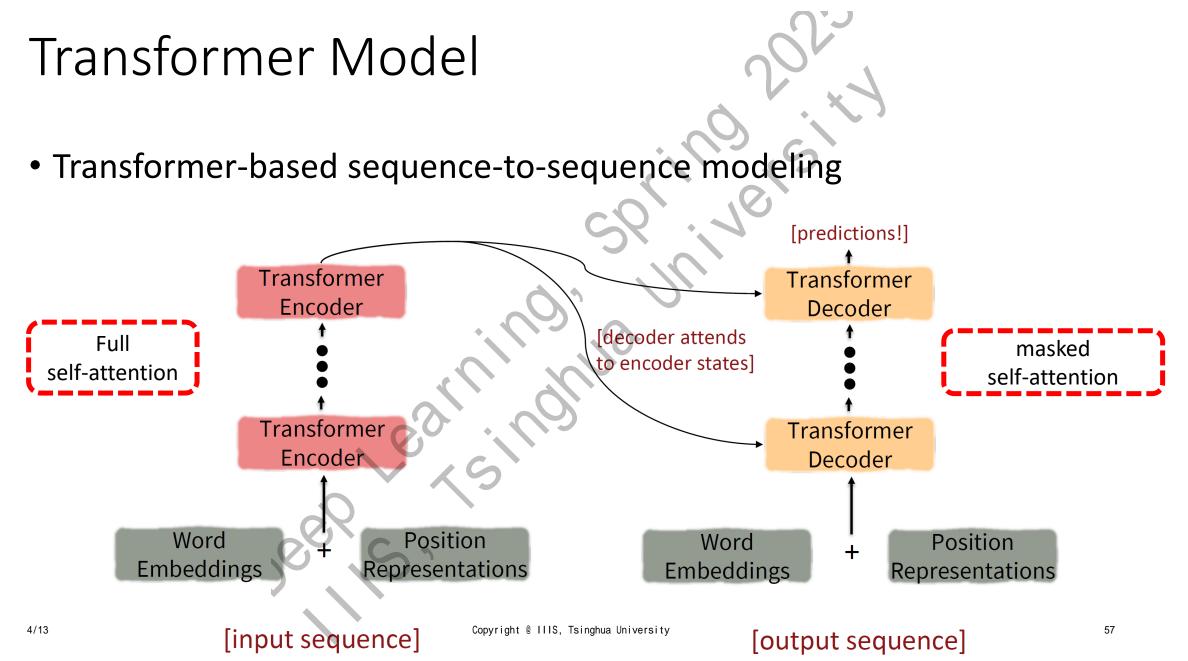






- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Solution: position encoding
 - Lack of non-linearities
 - Solution: post-processing MLP layer
 - Capability of autoregressive modelling
 - Solution: masked self-attention

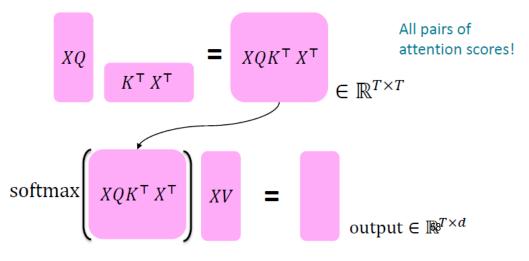
- Issues of Vanilla Self-Attention
 - Notion of sequence order
 - Solution: position encoding
 - Lack of non-linearities
 - Solution: post-processing MLP layer
 - Capability of autoregressive modelling
 - Solution: masked self-attention
 - Basic building block for the famous "Transformer" model!
 - Attention is all you need (NIPS2017, Vaswani et al, Google)
 - Self-attention + a few more other enhancements!
 - A milestone: first pure attention-based model for effective sequence modeling
 - Originally proposed for NMT: Soon dominates general sequence modeling problems



- Transformer-based sequence-to-sequence modeling
 - Basic building blocks: masked self-attention
 - Enhancements
 - Key-query-value attention
 - Obtain q_t , v_t , k_t from X_t
 - $q_t = W^q X_t$; $v_t = W^v X_t$; $k_t = W^k X_t$ (position encoding omitted)

Copyright @ IIIS, Tsinghua University

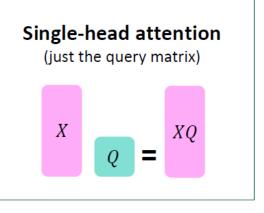
- W^q, W^v, W^k are learnable weight matrices
- $\alpha_{i,j} = \operatorname{softmax}(q_i^T k_j); out_i = \sum_j \alpha_{i,j} v_j$
- Intuition: key, query, and value can focus on different parts of input

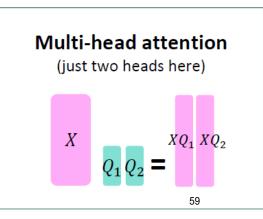


- Transformer-based sequence-to-sequence modeling
 - Basic building blocks: masked self-attention
 - Enhancements
 - Key-query-value attention
 - Multi-headed attention
 - Standard attention → single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only "look at" a single position j with high $\alpha_{i,j}$
 - What if we want to look at different *j* for different reasons?
 - Idea: define *h* separate attention heads
 - *h* different attention distributions, keys, values and queries
 - $Q^{l}, K^{l}, V^{l} \in \mathbb{R}^{d \times \frac{d}{h}}$, for $1 \le l \le h$

•
$$\alpha_{i,j}^{l} = \operatorname{softmax}\left(q_{i}^{l^{T}}k_{j}^{l}\right); out_{i}^{l} = \sum_{j} \alpha_{i,j}^{l}v_{j}^{l}$$

#Params Unchanged!

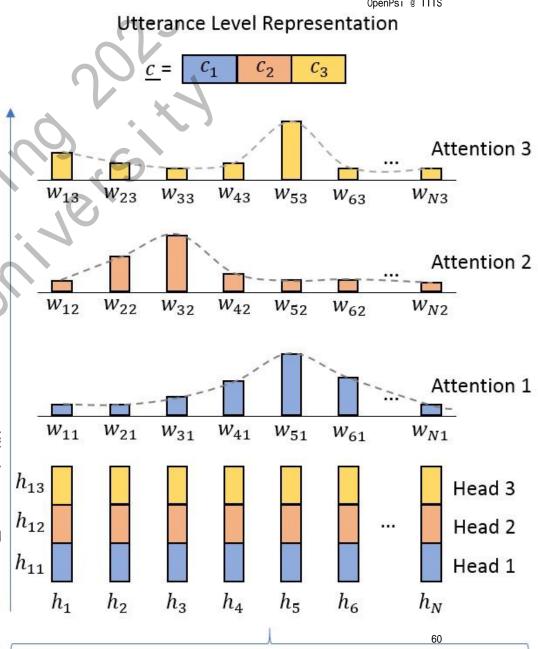




- Transformer-based sequence-to-sequenc
 - Basic building blocks: masked self-attention
 - Enhancements
 - Key-query-value attention
 - Multi-headed attention
 - Standard attention \rightarrow single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only "look at" a single position j with hig
 - What if we want to look at different *j* for dif
 - Idea: define *h* separate attention heads
 - *h* different attention distributions, keys, valu
 - $O^{l}, K^{l}, V^{l} \in \mathbb{R}^{d \times \frac{d}{h}}$, for $1 \le l \le h$

•
$$\alpha_{i,j}^{l} = \operatorname{softmax}\left(q_{i}^{l^{T}}k_{j}^{l}\right); out_{i}^{l} = \sum_{j} \alpha_{i,j}^{l}v_{j}^{l}$$

ty



- Transformer-based sequence-to-sequence modeling
 - Basic building blocks: masked self-attention
 - Enhancements
 - Key-query-value attention
 - Multi-headed attention
 - Architecture modifications
 - Residual connection
 - Layer normalization
 - $out_t = LN(f_{SA}(X_t, M) + X_t); m_t = LN(MLP(out_t) + out_t)$
 - Scaled dot product
 - Intuition: when dimension d becomes large, $q^T k$ can be large
 - Issue: input to softmax can be large and make gradient small

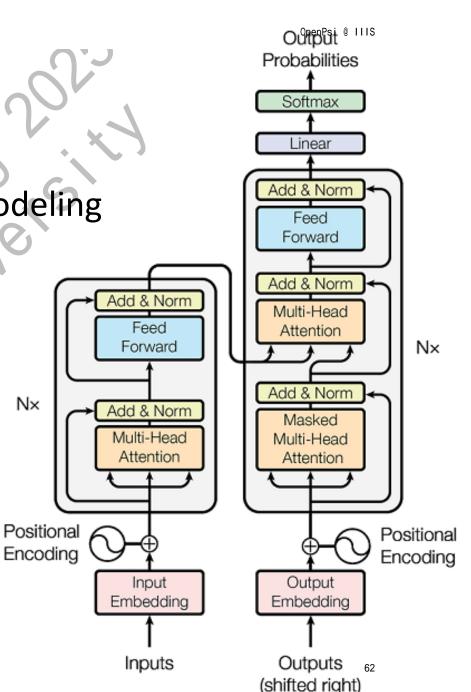
•
$$\alpha_{i,j}^{l} = \operatorname{softmax}\left(\frac{q_{i}^{l^{1}}k_{j}^{l}}{\sqrt{d/h}}\right)_{\operatorname{Copyright @ IIIS, Tsinghua University}}$$

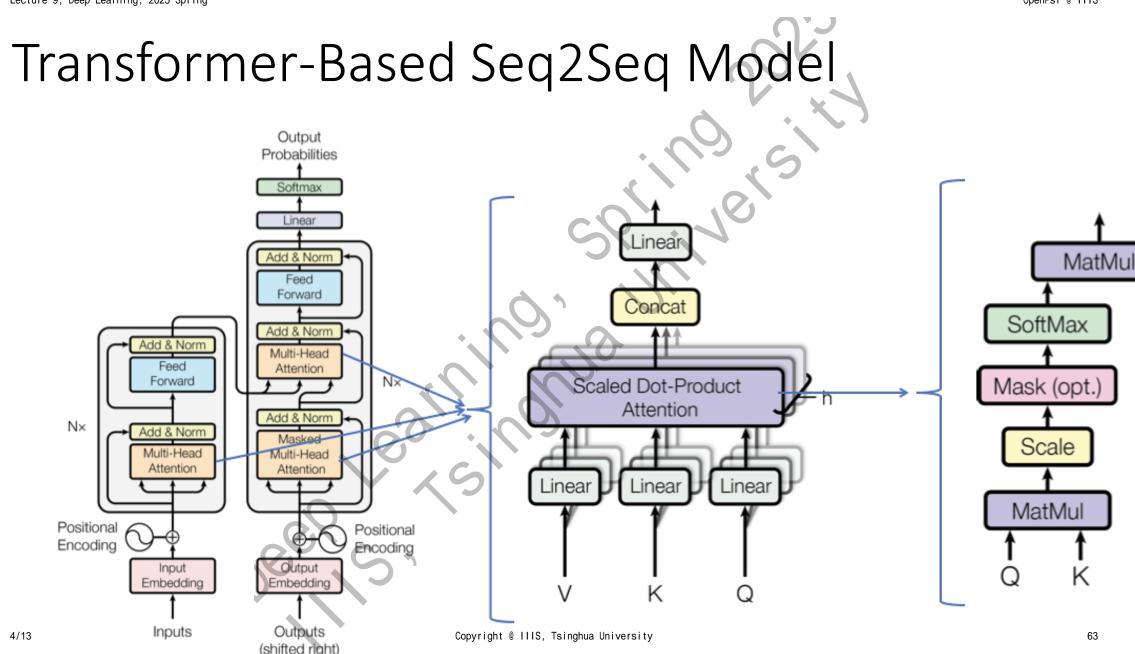
Transformer-based sequence-to-sequence modeling

in the

Copyright @ IIIS, Tsinghua University

- Basic building blocks: masked self-attention
 - Position encoding
 - Post-processing MLP
 - Attention mask
- Enhancements
 - Key-query-value attention
 - Multi-headed attention
 - Architecture modifications
 - Residual connection
 - Layer normalization
 - Scaled dot product





Inputs

4/13

Outputs

(shifted right)

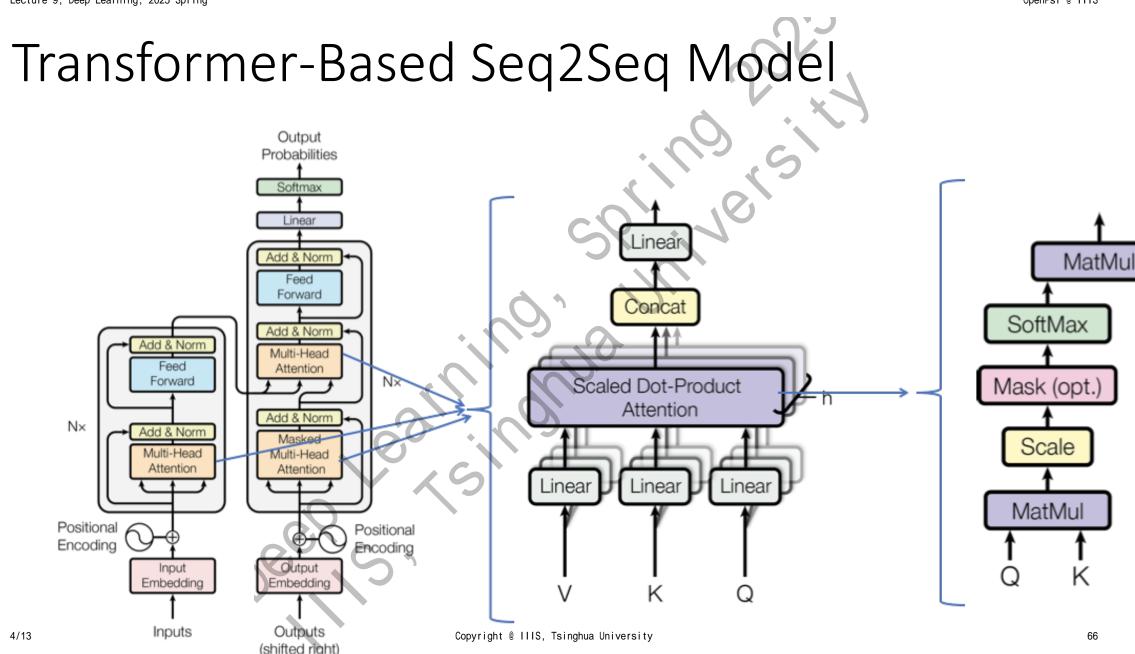
OpenPsi @ IIIS

Transformer-Based Seq2Seq Model

- Cross-attention
 - The conditioning part of transformer
 - Decoder can generate texts conditioning on the input sequence
 - Just like standard attention in RNN seq2seq model
 - z_t : decoder SA module inputs
 - h_t : encoder output hidden states
 - For each decoder out_t , we attend on encoder hiddens
 - Query from decoder: $q_t = W^q z_t$
 - Key and value from encoder: $k_j = W^k h_j$; $v_j = W^v h_j$

•
$$\alpha_{ij} = \operatorname{softmax}\left(\frac{q_i^T k_j}{\sqrt{d}}\right); out_i = LN(\sum_j \alpha_{ij} v_j + z_i)$$

Many practical variants can be implemented



Transformer-Based Seq2Seq Model

• Machine translation with transformer (NIPS2017, Google)

		-	
BLEU	Training Cost (FLOPs)		
E EN-FR	EN-DE	EN-FR	
39.2		$1.0\cdot10^{20}$	
39.92	$2.3\cdot10^{19}$	$1.4\cdot10^{20}$	
o 40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$	
40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$	
40.4		$8.0\cdot10^{20}$	
) 41.16	$1.8 \cdot 10^{20}$	$1.1\cdot10^{21}$	
41.29	$7.7\cdot10^{19}$	$1.2\cdot10^{21}$	
38.1		10^{18}	
41.8	$2.3 \cdot$	10^{19}	
	39.2 39.92 40.46 40.56 40.4 41.16 5 41.29 38.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

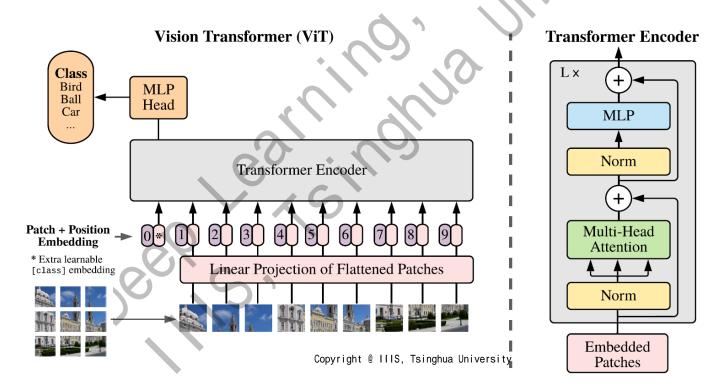
Transformer-Based Seq2Seq Model

- Generating Wikipedia by summarizing long sequences (ICLR2018, Google)
 - Document generation

Model	Test perplexity	ROUGE-L	
seq2seq-attention, $L = 500$	5.04952	12.7	
Transformer-ED, $L = 500$	2.46645	34.2	
Transformer-D, $L = 4000$	2.22216	33.6	
Transformer-DMCA, no MoE-layer, L = 11000	2.05159	36.2	
Transformer-DMCA, $MoE-128$, $L = 11000$	1.92871	37.9	
Transformer-DMCA, MoE-256, $L = 7500$	1.90325	38.8	

Transformer Model for Images

- Vision Transformer (ViT, Google Brain, ICLR 2021, 33.4k citation)
 - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
 - Decompose an image to 16x16 patches and then apply transformer encoder



69

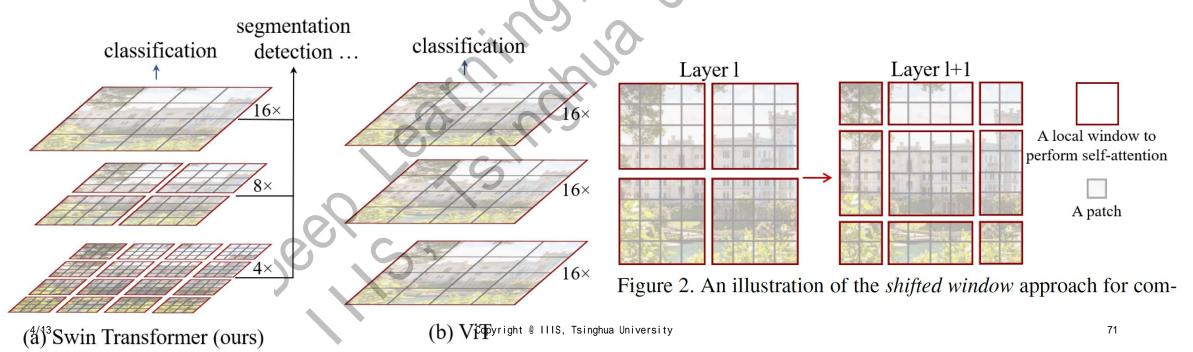
Transformer Model for Images

- Vision Transformer (ViT, Google Brain, ICLR 2021, 33.4k citation)
 - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
 - Decompose an image to 16x16 patches and then apply transformer encoder

	Ours-JFT	Ours-JFT	Ours-I21k	BiT-L	Noisy Student	
	(ViT-H/14)	(ViT-L/16)	(ViT-L/16)	(ResNet152x4)	(EfficientNet-L2)	
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^*$	
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55	
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	—	
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	—	
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—	
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	—	
VTAB (19 tasks)	$\textbf{77.63} \pm 0.23$	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	—	
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k	
4/13 Copyright @ IIIS, Tsinghua University 70						

Transformer Model for Images

- Swin Transformer (MSRA, CVPR 2021 best paper)
 - Build hierarchical feature maps at different resolution
 - Self-attention only within each block (linear computation for image size)
 - Shifted block partitions to encode information between blocks



4/13

Transformer Model for Images

- Swin Transformer (MSRA, CVPR 2021 best paper)
 - Build hierarchical feature maps at different resolution
 - Self-attention only within each block (linear computation for image size)
 - Shifted block partitions to encode information between blocks

Method		i-val		-dev	#param.	FLOPs
Wiethou	AP ^{box}	AP ^{mask}	AP ^{box}	AP^{mask}	#param.	TLOI 3
RepPointsV2* [12]	-	-	52.1	-		-
GCNet* [7]	51.8	44.7	52.3	45.4		1041G
RelationNet++* [13]	-	-	52.7	-	-	-
SpineNet-190 [21]	52.6	-	52.8		164M	1885G
ResNeSt-200* [78]	52.5	-	53.3	47.1	- +	
EfficientDet-D7 [59]	54.4	-	55.1		77M	410G
DetectoRS* [46]	-	-	55.7	48.5		-
YOLOv4 P7* [4]	-		55.8	-	-	-
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G
X101-64 (HTC++)	52.3	46.0		-	155M	1033G
Swin-B (HTC++)	56.4	49.1			160M	1043G
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-

				Hnorom	$\mathbf{EI} \mathbf{O} \mathbf{D}_{c}$	EDC	
C	Method	Backbone	mIoU	score	#param.	FLOPS	1.1.2
	DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
	DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
	ACNet [24]	ResNet-101	45.9	38.5	-		
	DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
	OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
	UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
-	OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
	DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
	DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
	SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
-	UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
-	UperNet	Swin-T	46.1	-	60M	945G	18.5
	UperNet	Swin-S	49.3	-	81M	1038G	15.2
	UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
	UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

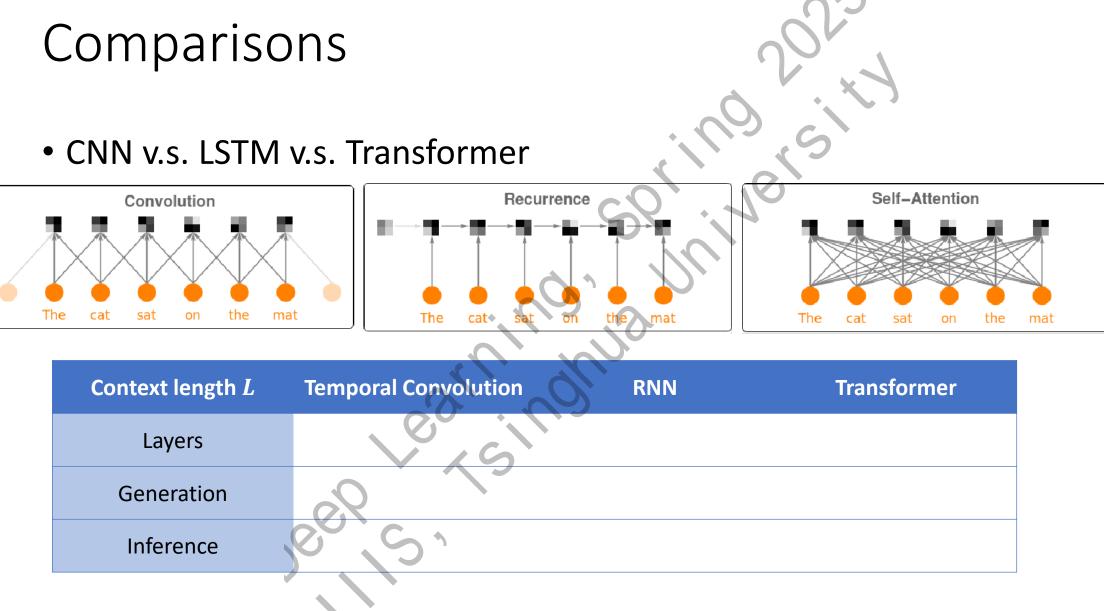
val

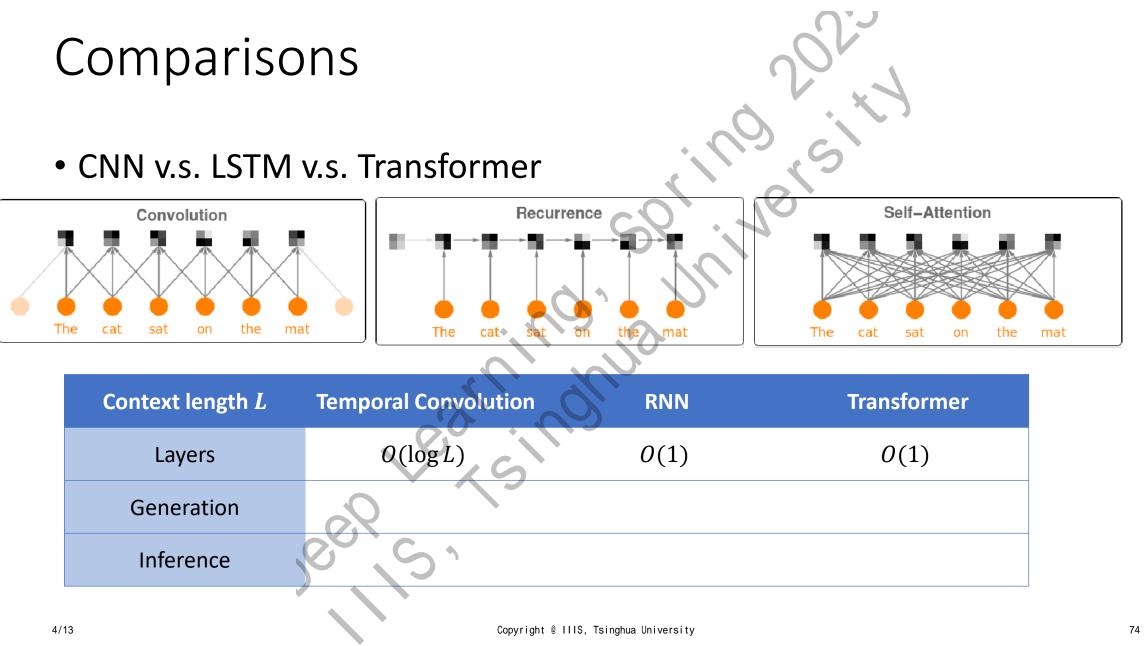
test "

ADE20K

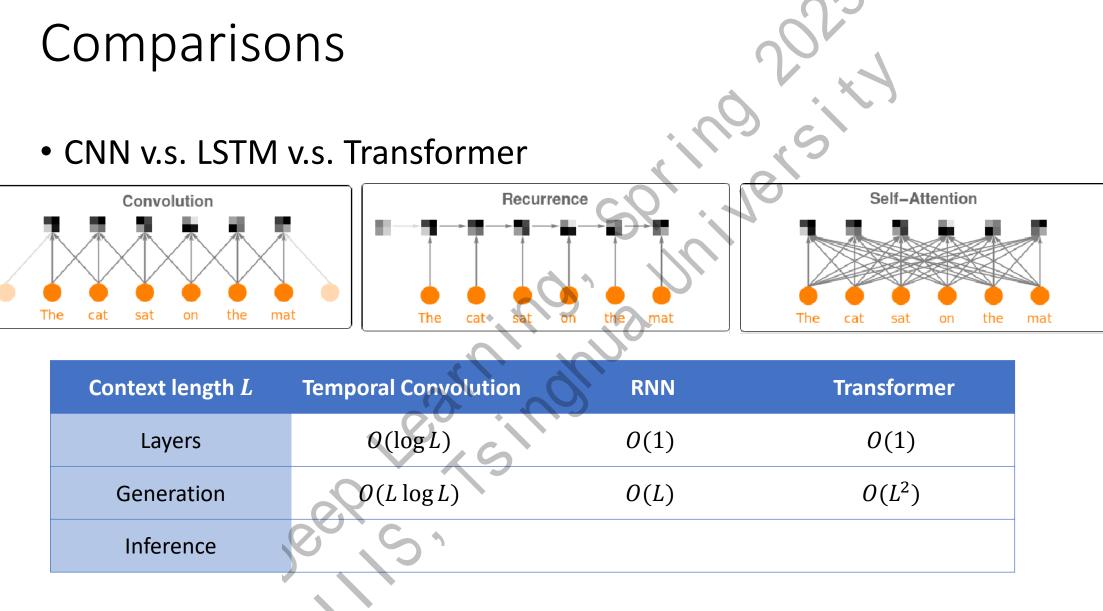
Table 2. Results on COCO object detection and instance segmentation. [†]denotes that additional decovolution layers are used to the first state to the state of the state produce hierarchical feature maps. * indicates multi-scale testing.

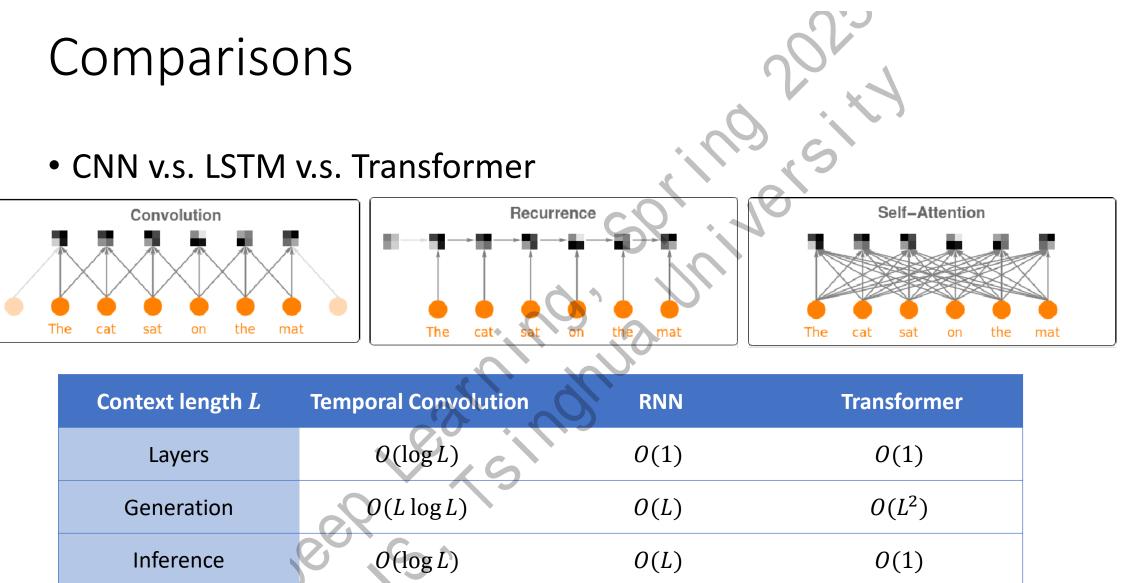
Table 3. Results of semantic segmentation on the ADE20K val to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

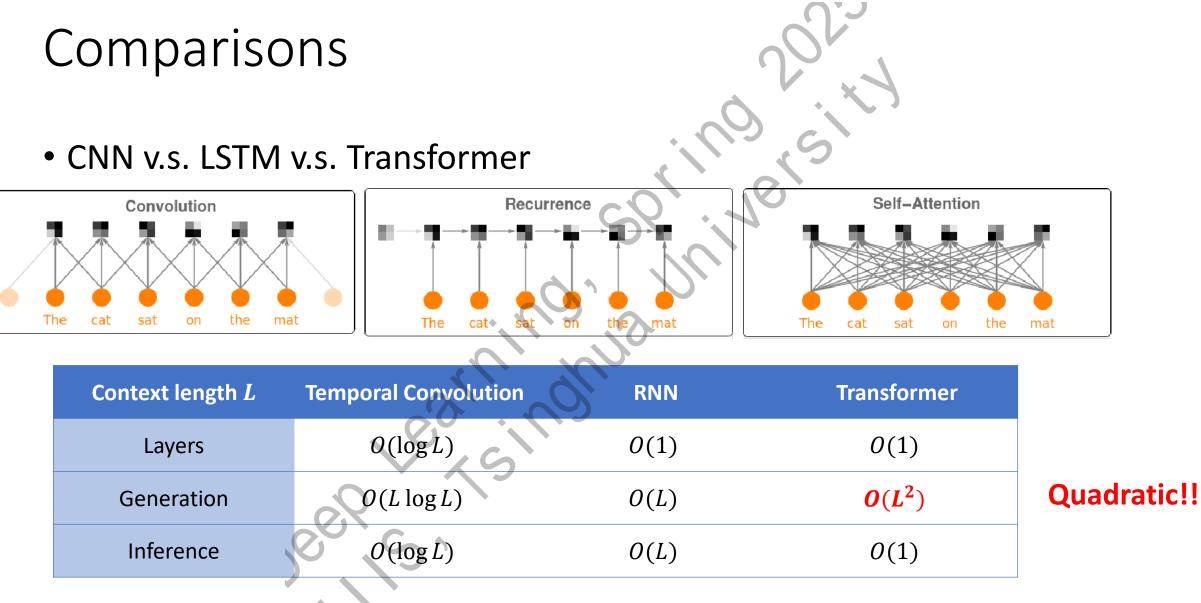




75







Can we speedup, transformer.generation?

Speed up Transformers

- Quadratic generation cost
 - $O(L^2)$ for length L: sequential generation $O(L) \times attention O(L)$
 - What if we want to model sequence length of, say, $L > 10^4$

4/13

Speed up Transformers

- Quadratic generation cost
 - $O(L^2)$ for length L: sequential generation $O(L) \times attention O(L)$
- Make attention faster/better
 - Large-scale training: transformer-XL; XL-net (Zhilin Yang, et al, Google, 2020)
 - Projection tricks: Linformer (Facebook AI, O(n) computation, 2020)
 - Math tricks: Performer (Google, O(n) computation, 2020)
 - Sparse interactions:
 - Big Bird (Google, 2020), Multi-head Latent Attention (DeepSeek, 2024) https://planetbanatt.net/articles/mla.html
 - Fast and memory-efficient attention:
 - Flash Attention (Tri Dao, et al, 2022) and Ring Attention (Hao Liu, et al, 2023)
 - System engines for fast generation: vLLM (Berkeley) and SGLang (xAI & UCLA)
 - Even Parallel/Contextualized RNN (make RNN great again):
 - RWKV RNN (Open-Source, 2023) & Mamba (Gu, Albert and Tri Dao, 2023)
 - Reduce attention flatten issue when length grows: Scalable-Softmax (2025)

79

Speed up Transformers

- Quadratic generation cost
 - $O(L^2)$ for length L: sequential generation O(L) × attention O(L)
- Remark:
 - Ideally, attention can be computed in parallel given unbounded computation and memory bandwidth
- Can we accelerate autoregressive generation?
 - This is the key bottleneck for language model generation, which cannot be accelerate by hardware improvement

Output

Laver

Hidder

Laver

- WaveNet (Recap)
 - Let's use the language model notations
 - Output $y_1 \dots y_i$
 - Input $x_1 \dots x_i$ ($x_i = y_{i-1}$)
 - $p(y) = \prod_i p(y_i | x_{1\dots i})$
 - y_i can only computed after y_{i-1}
 - $p(y_i) = N(\mu_{\theta}(x_{1...i}), \exp^2(\alpha_{\theta}(x_{1...i})))$
 - $x_i \leftarrow y_{i-1}$
 - y_{i-1} is part of input of y_i
 - Can we compute y_i without waiting?

 $x_{i-2} x_{i-1} x_i$

...

 $p(y_i|x_{1\dots i})$

Output Dilation = 8

Hidden Layer Dilation = 4

Hidden Layer Dilation = 2

Hidden Layer Dilation = 1

Input

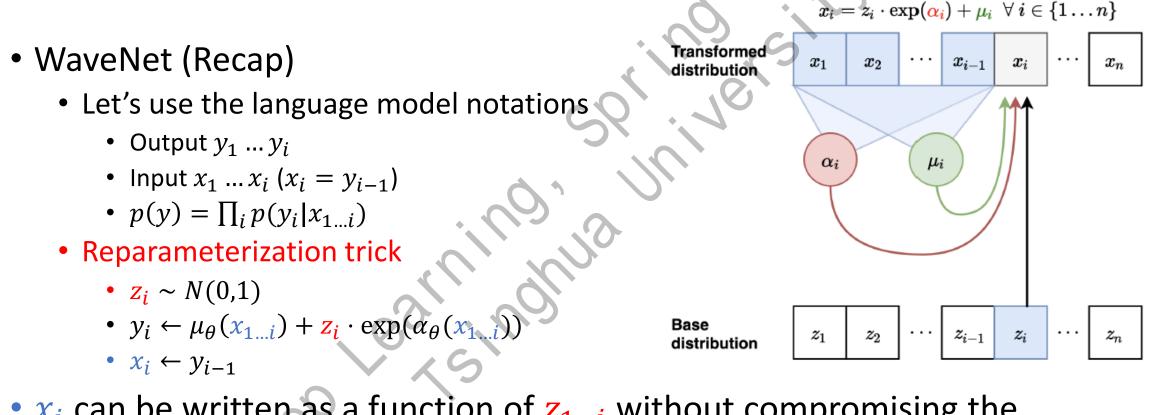
- WaveNet (Recap)
 - Let's use the language model notations
 - Output $y_1 \dots y_i$
 - Input $x_1 \dots x_i$ ($x_i = y_{i-1}$)
 - $p(y) = \prod_i p(y_i | x_{1\dots i})$
 - Reparameterization trick
 - $z_i \sim N(0,1)$
 - $y_i \leftarrow \mu_{\theta}(x_{1...i}) + \underline{z_i} \cdot \exp(\alpha_{\theta}(x_{1...i}))$
 - $x_i \leftarrow y_{i-1}$

Output

Layer

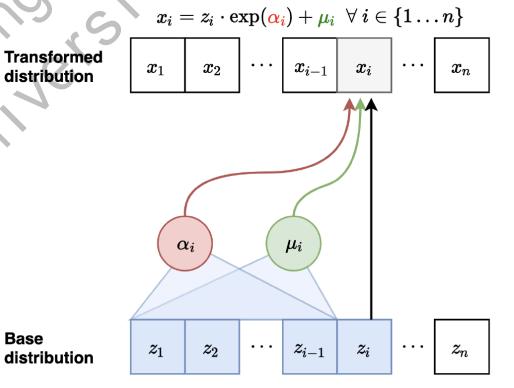
Input O O O O O O O O O O O O O O O O O

83



- x_i can be written as a function of $z_{1...i}$ without compromising the representation power!
 - Each x is corresponding to a unique z! (your homework)

- Parallel WaveNet (DeepMind, ICML 2018)
 - Sequential modeling notation (ignore y)
 - Sequence tokens *x* & latent variable *z*
 - $p(x) = \prod_i p(x_i | x_{1\dots i})$
 - Reparameterization trick
 - $z_i \sim N(0,1)$
 - $x_i \leftarrow \mu_{\theta}(z_{1\dots i-1}) + \underline{z_i} \cdot \exp(\alpha_{\theta}(z_{1\dots i-1}))$
 - Parallel generation
 - First generate *z* and then *x*

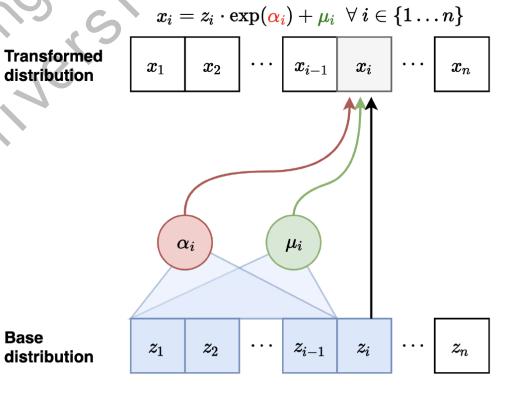


85

Beyond Autoregressive Generation

- Parallel WaveNet (DeepMind, ICML 2018)
 - Sequential modeling notation (ignore y)
 - Sequence tokens x & latent variable z
 - $p(x) = \prod_{i} p(x_i | x_{1...i})$
 - Reparameterization trick
 - $z_i \sim N(0,1)$
 - $x_i \leftarrow \mu_{\theta}(z_{1\dots i-1}) + z_i \cdot \exp(\alpha_{\theta}(z_{1\dots i-1}))$
 - Parallel generation
 - First generate z and then x
 - What about inference?
 - Given x, how to compute p(x) for MLE training?

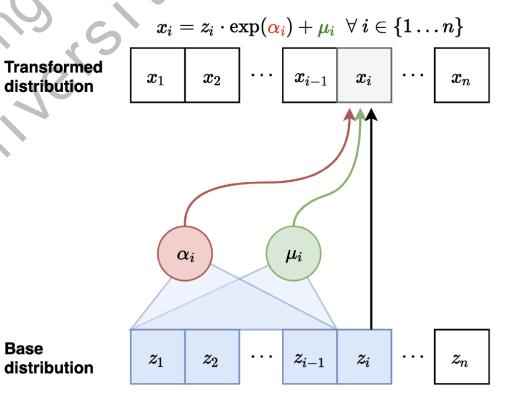
Base



86

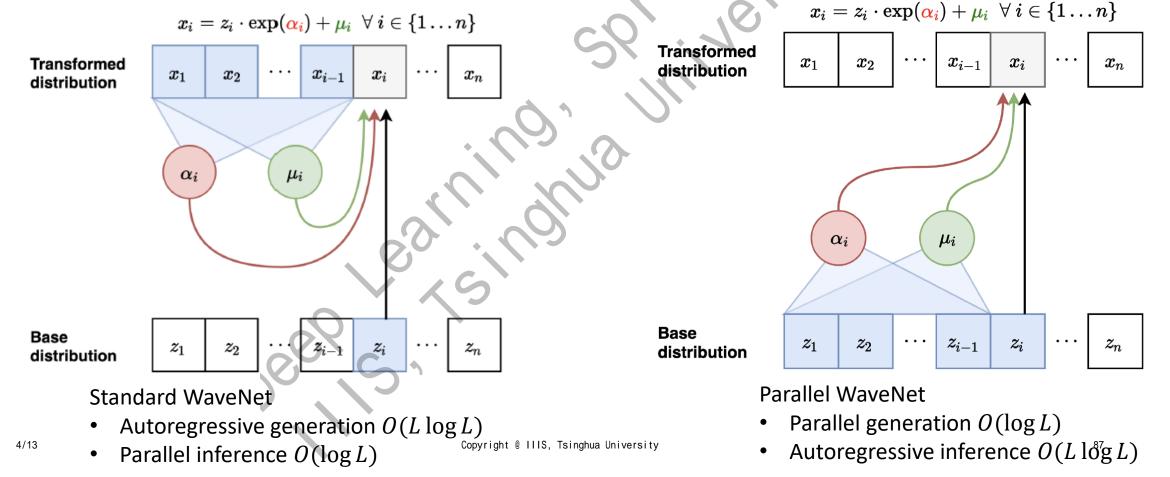
Beyond Autoregressive Generation

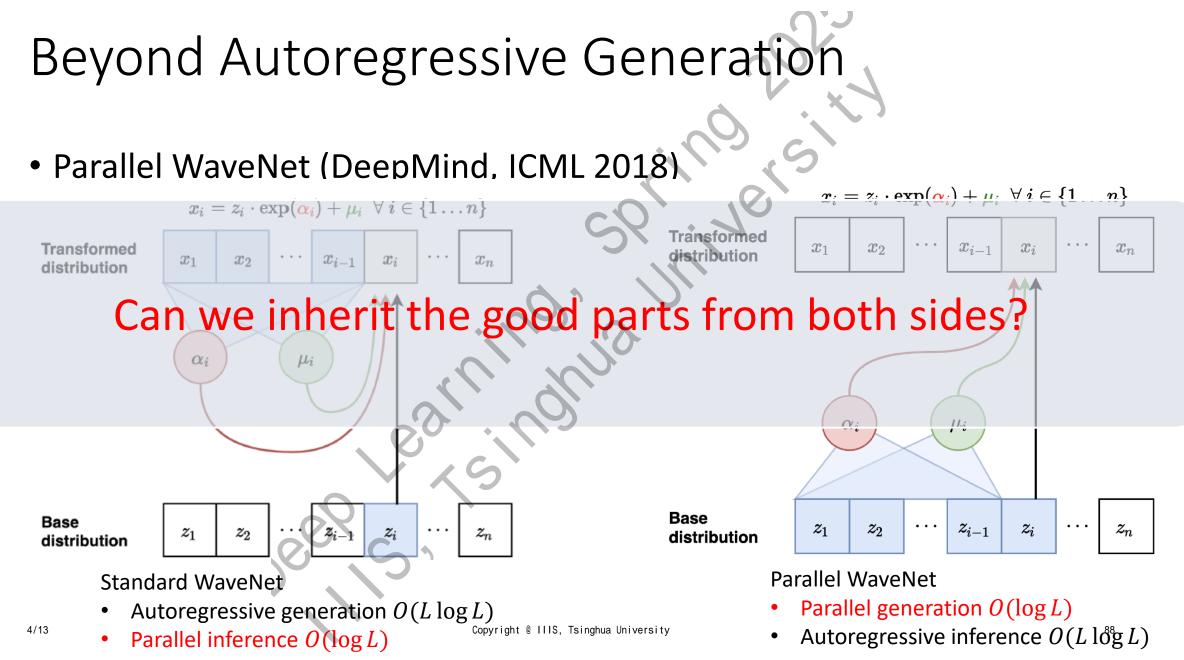
- Parallel WaveNet (DeepMind, ICML 2018)
 - Sequential modeling notation (ignore y)
 - Sequence tokens x & latent variable z
 - $p(x) = \prod_{i} p(x_i | x_{1...i})$
 - Reparameterization trick
 - $z_i \sim N(0,1)$
 - $x_i \leftarrow \mu_{\theta}(z_{1\dots i-1}) + z_i \cdot \exp(\alpha_{\theta}(z_{1\dots i-1}))$
 - Parallel generation
 - First generate z and then x
 - Sequential inference O(L
 - x_i is a function of $z_1 \dots z_i$
 - $z_i \leftarrow (x_i \mu_i) / \exp(\alpha_i)$
 - z_i can only be recovered after z_{ij} and z_{ij} and z_{ij}



Base

• Parallel WaveNet (DeepMind, ICML 2018)





- Parallel WaveNet (DeepMind, ICML 2018)
 - Key facts
 - Standard WaveNet is fast for training (inference is fast)
 - Parallel WaveNet is fast for serving (generation is fast)
 - Distillation by teacher-student framework!
 - Teacher: $p_T(x_i | x_{< i})$ a standard WaveNet for training on massive data
 - Student: $p_S(x_i | z_{< i})$ a parallel WaveNet for serving
 - p_S is trained by distillation from p_T
 - i.e., minimize the KL-difference between $p_S(x)$ and $p_T(x)$
 - Algorithm Sketch
 - Step 1: Train teacher $p_T(x_i | x_{\leq i})$ network and fix it
 - Step 2: Minimize the KL-difference $KL(p_S||p_T)$
 - Finally we use $p_S(x)$ for fast sampling

- Parallel WaveNet (DeepMind, ICML 2018)
 - Key facts
 - Standard WaveNet is fast for training (inference is fast)
 - Parallel WaveNet is fast for serving (generation is fast)
 - Distillation by teacher-student framework!
 - Teacher: $p_T(x_i | x_{< i})$ a standard WaveNet for training on massive data
 - Student: $p_S(x_i | z_{< i})$ a parallel WaveNet for serving
 - p_S is trained by distillation from p_T
 - i.e., minimize the KL-difference between $p_S(x)$ and $p_T(x)$
 - Algorithm Sketch
 - Step 1: Train teacher $p_T(x_i | x_{\leq i})$ network and fix it
 - Step 2: Minimize the KL-difference $KL(p_S || p_T)$
 - Finally we use $p_S(x)$ for fast sampling

- Parallel WaveNet (DeepMind, ICML 2018)
 - Teacher-Student Learning
 - Pretrain $p_T(x)$ and then train $p_S(x)$ by imitation learning
 - Distance measure for two distributions
 - KL divergence: $KL(p||q) = E_{x \sim p} \log \frac{p(x)}{q(x)}$
 - Distillation (Imitation learning)

$$L(\theta) = KL(p_S||p_T) = E_{x \sim p_S}[\log p_S(x;\theta) - \log p_T(x)]$$

- Monte Carlo estimates for the expectation
 - Key: sample from the student network!
- Sample $z \sim N(0, I)$, generate $x \sim p_S(x|z)$ (parallel)
- Evaluate $p_S(x|z)$ (parallel since z is known)
- Evaluate $p_T(x)$ (parallel since $p_T(x)$ is a standard autoregressive model)

- Parallel WaveNet (DeepMind, ICML 2018)
 - Teacher-Student Learning
 - Pretrain $p_T(x)$ and then train $p_S(x)$ by imitation learning
 - Speedup
 - 20x faster than real-time
 - 1000x faster than WaveNet
 - Google production
 - Remark

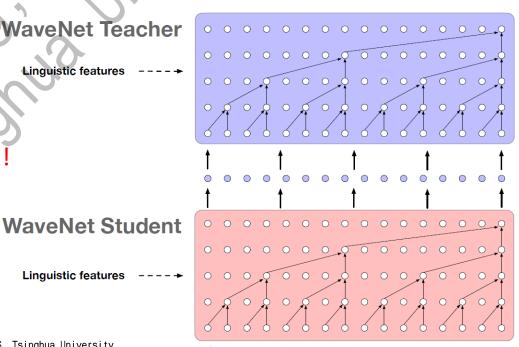
4/13

- A reparameterization trick is assume
- What about language model?
 - Output are discrete tokens
 - No parameterization available

Copyright @ IIIS, Tsinghua University

Linguistic features

Linguistic features



Teacher Output $P(x_i | x_{< i})$

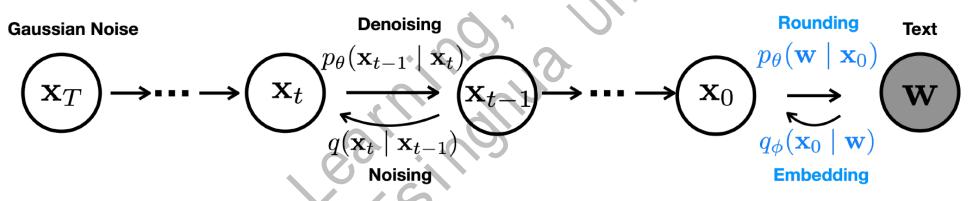
Generated Samples $x_i = g(z_i | z_{<i})$

Student Output $P(x_i|z_{\leq i})$

92 Input noise

 z_i

- Diffusion-based language model
 - Key idea: use a diffusion model to generate all tokens at once!
 - Idea#1: treat embeddings of tokens as images

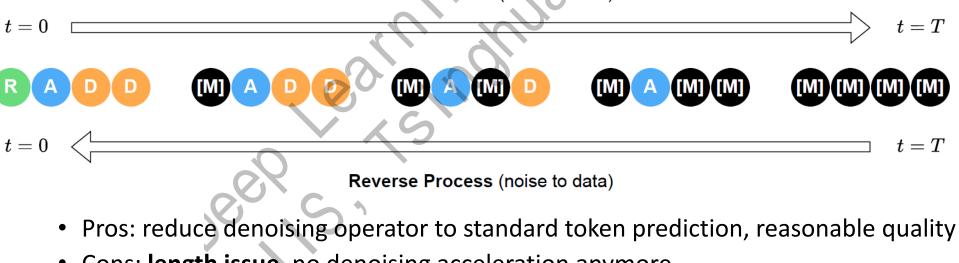


- Pros: we can directly apply all techniques from diffusion models
- Cons: length issue, extremely high dimensions, poor generation quality

4/13

Beyond Autoregressive Generation

- Diffusion-based language model
 - Key idea: use a diffusion model to generate all tokens at once!
 - Idea#1: treat embeddings of tokens as images
 - Idea#2: define the denoising process over token masks



Forward Process (data to noise)

- Cons: length issue, no denoising acceleration anymore
- Any simpler method for joint token predictions?

4/13

Beyond Autoregressive Generation

- Multi-Token Prediction (ICML 2024)
 - Key insight $p(x_{1..L}) \approx \prod_i p(x_L)$
 - When the sequence length L is really short, we can break the sequential dependency
 - Predict *K* tokens jointly in parallel
 - $p(x_{i-K+1\dots i}|x_{1\dots i-K}) \approx \prod_{j=1}^{K} p(x_{i-j+1}|x_{1\dots i-K})$

Discarded at inference (or used to speed up model up to 3 times)

- Multi-Token Prediction (ICML 2024)
 - Key insight $p(x_{1..L}) \approx \prod_i p(x_L)$
 - When the sequence length L is really short, we can break the sequential dependency
 - Predict *K* tokens jointly in parallel
 - $p(x_{i-K+1\dots i}|x_{1\dots i-K}) \approx \prod_{j=1}^{K} p(x_{i-j+1}|x_{1\dots i-K})$
 - Understanding multi-token prediction
 - Using a faster but worse model (independent model) to approximate the target distribution (full language model)
 - Other choice of fast sampling model?
 - E.g., an LSTM, or a just smaller model

- Speculative Decoding (ICML 2023)
 - Key facts
 - A general language model p(x) is fast at evaluation but slow at generation
 - A sampling model q(x) is fast at generation but at low quality
 - Goal: adaptively use q(x) to generate at easy cases
 - How to define easy cases?

- Speculative Decoding (ICML 2023)
 - Key facts
 - A general language model p(x) is fast at evaluation but slow at generation
 - A sampling model q(x) is fast at generation but at low quality
 - Goal: adaptively use q(x) to generate at easy cases
 - MCMC Sampling!
 - We treat q(x) as a proposal distribution
 - Given a partial prefix $x_{1...i}$, run q to generate next K tokens x'
 - Evaluate p(x'|x) and q(x'|x), accept x' with prob. $\min\left(1, \frac{p(x'|x)}{q(x'|x)}\right)$ (parallel)
 - If rejection, re-sample $x' \propto \max(0, p(x'|x) q(x'|x))$ (autoregressive)
 - In practice, we can run speculative sampling for multiple K

[INST]Write a poem for my three year old[/INST]

[INST]Write a poem for my three year old[/INST]

AR Generation of Llama 13B

Copyright @ IIIS, Tsinghua University Speculative decoding

Faster Transformer Generation

- Reparameterization and distillation
 - Pros: fast training and inference
 - Cons: only works for continuous values
- Diffusion-based language model
 - High complexity for generation and still low generation quality
- Multi-token prediction
 - Trade generation quality for speed
- Speculative decoding
 - Most general approach to speed up generation
 - Can be applied to any trained language model without modification

Summary

- Language Model & Sequence to Sequence Model
 - Fundamental ideas and methods for sequence modeling/tasks
- Attention Mechanism
 - So far the most successful idea for sequence data in deep learning
 - A scale/order-invariant representation
 - Transformer: a fully attention-based model for sequence data
- Speedup Transformers
 - Generation is the key bottleneck for transformer models
 - Acceleration by faster attention
 - Acceleration by non-autoregressive generation
 - Model changes: distillation, diffusion, multi-token prediction
 - Sampling methods: speculative decoding

Thanks

5